Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 7: 571696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033718

RESUMO

Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aß1 - 42 peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aß1 - 42 peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aß1 - 42 and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides. Despite the increasing amount of information on AD associated amyloids and their toxicity, the molecular mechanisms involved still remain unclear and require in-depth investigation at the local scale to clearly decipher the role of the sequence of the amyloid peptides, of their secondary structures, of their oligomeric states, and of their interactions with lipid membranes. In this original study, through the use of Atomic Force Microscopy (AFM) related-techniques, high-speed AFM and nanoInfrared AFM, we tried to unravel at the nanoscale the link between aggregation state, structure and interaction with membranes in the amyloid/membrane interaction. Using three mutants of Aß peptides, L34T, oG37C, and WT Aß1 - 42 peptides, with differences in morphology, structure and assembly process, as well as model lipidic membranes whose composition and structure allow interactions with the peptides, our AFM study coupling high spatial and temporal resolution and nanoscale structure information clearly evidences a local correlation between the secondary structure of the peptides, their fibrillization kinetics and their interactions with model membranes. Membrane disruption is associated to small transient oligomeric entities in the early stages of aggregation that strongly interact with the membrane, and present an antiparallel ß-sheet secondary structure. The strong effect on membrane integrity that exists when these oligomeric Aß1 - 42 peptides interact with membranes of a particular composition could be a lead for therapeutic studies.

2.
Nanotechnology ; 20(47): 475701, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19858552

RESUMO

Mechanical response of carbon nanotube atomic force microscope probes are investigated using a thermal noise forcing. Thermal noise spectra are able to investigate mechanical behaviors that cannot be studied using classical atomic force microscope modes. Experimental results show that the carbon nanotube contacts can be classified in two categories: the free sliding and pinned cases. The pinned contact case requires the description of the cantilever flexural vibrations with support spring-coupled cantilever boundary conditions. Our experimental results show that carbon nanotubes exhibit different contact behaviors with a surface, and in turn different mechanical responses.

3.
Nanotechnology ; 19(3): 035709, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-21817594

RESUMO

In this paper we address the mechanical properties of carbon nanotubes anchored to atomic force microscopy (AFM) tips in a detailed analysis of experimental results and exhaustive description of a simple model. We show that volume elastic and surface adhesive forces both contribute to the dynamical AFM experimental signals. Their respective weights depend on the nanotube properties and on an experimental parameter: the oscillation amplitude. To quantify the elastic and adhesive contributions, a simple analytical model is used. It enables analytical expressions of the resonance frequency shift and dissipation that can be measured in the atomic force microscopy dynamical frequency modulation mode. It includes the nanotube adhesive contribution to the frequency shift. Experimental data for single-wall and multi-wall carbon nanotubes compare well to the model predictions for different oscillation amplitudes. Three parameters can be extracted: the distance necessary to unstick the nanotube from the surface and two spring constants corresponding to tube compression and to the elastic force required to overcome the adhesion force.

4.
Langmuir ; 21(15): 6934-43, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16008406

RESUMO

The adsorption of mixed terminally aminated organosilyl compounds with long-chain n-alkyltrichlorosilanes on silica substrates has been studied by FTIR and AFM to deposit and study DNA. By optimization of deposition conditions, the mixed monolayers were found to be well organized and homogeneous. The amino group was protected to obtain a reproducible grafting and then deprotected after the film formation. In addition, atomic force microscopy (AFM) studies in both dynamical modes, amplitude modulation and frequency modulation, reveal that the layer behaves as a fluid as measured by the tip-cantilever and has a smaller characteristic time than the tip-cantilever. For three amplitudes, the experimental frequency shifts have been modeled for a fluidlike layer crossed by the tip. Finally, we show that this new fluidlike monolayer is suitable for DNA deposition and AFM studies.


Assuntos
Microscopia de Força Atômica/métodos , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...