Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001345

RESUMO

PURPOSE: This article introduces the Pentacam® Cornea OCT (optical coherence tomography). This advanced corneal imaging system combines rotating ultra-high-resolution spectral domain OCT with sub- 2-micron axial resolution and Scheimpflug photography. The purpose of this study is to present the first experience with the instrument and its potential for corneal diagnostics, including optical biopsy. METHODS: In this prospective study, the Pentacam® Cornea OCT was used to image the corneas of seven patients. The novel wide-angle pericentric scan system enables optimal OCT imaging performance for the corneal layer structure over the entire width of the cornea, including the limbal regions. A detailed analysis of the resulting images assessed the synergism between the OCT and Scheimpflug photography. RESULTS: The Pentacam® Cornea OCT demonstrated significantly improved image resolution and ability to individualize corneal layers with high quality. There is a synergism between the OCT high-definition signal to individualize details on the cornea and Scheimpflug photography to detect and quantify corneal scattering. The noncontact exam was proven safe, user-friendly, and effective for enabling optical biopsy. CONCLUSIONS: Pentacam® Cornea OCT is an advancement in corneal imaging technology. The ultra-high-resolution spectral domain OCT and Scheimpflug photography provide unprecedented detail and resolution, enabling optical biopsy and improving the understanding of corneal pathology. Further studies are necessary to compare and analyze the tomographic reconstructions of the cornea with the different wavelengths, which may provide helpful information for diagnosing and managing corneal diseases.

2.
J Biomed Opt ; 18(2): 26008, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23377007

RESUMO

We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser with active spectral shaping which enables the use of forward and backward sweep in order to double the imaging speed without a buffering stage. With this approach and with a custom designed data acquisition system, we show polarization-sensitive imaging with an A-scan rate of 350 kHz. The acquired three-dimensional data sets of healthy human volunteers show different polarization characteristics in the eye, such as depolarization in the retinal pigment epithelium and birefringence in retinal nerve fiber layer and sclera. The increased speed allows imaging of large volumes with reduced motion artifacts. Moreover, averaging several two-dimensional frames allows the generation of high-definition B-scans without the use of an eye-tracking system. The increased penetration depth of the system, which is caused by the longer probing beam wavelength, is beneficial for imaging choroidal and scleral structures and allows automated segmentation of these layers based on their polarization characteristics.


Assuntos
Retina/anatomia & histologia , Tomografia de Coerência Óptica/métodos , Algoritmos , Corioide/anatomia & histologia , Análise de Fourier , Humanos , Imageamento Tridimensional , Dispositivos Ópticos , Fenômenos Ópticos , Esclera/anatomia & histologia , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/estatística & dados numéricos
3.
Biomed Opt Express ; 3(7): 1620-31, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22808433

RESUMO

Recently, the wavelength range around 1060 nm has become attractive for retinal imaging with optical coherence tomography (OCT), promising deep penetration into the retina and the choroid. The adjacent water absorption bands limit the useful bandwidth of broadband light sources, but until now, the actual limitation has not been quantified in detail. We have numerically investigated the impact of water absorption on the axial resolution and signal amplitude for a wide range of light source bandwidths and center wavelengths. Furthermore, we have calculated the sensitivity penalty for maintaining the optimal resolution by spectral shaping. As our results show, with currently available semiconductor-based light sources with up to 100-120 nm bandwidth centered close to 1060 nm, the resolution degradation caused by the water absorption spectrum is smaller than 10%, and it can be compensated by spectral shaping with negligible sensitivity penalty. With increasing bandwidth, the resolution degradation and signal attenuation become stronger, and the optimal operating point shifts towards shorter wavelengths. These relationships are important to take into account for the development of new broadband light sources for OCT.

4.
Anal Bioanal Chem ; 400(9): 2699-720, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21547430

RESUMO

Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.


Assuntos
Tomografia de Coerência Óptica/métodos , Animais , Doenças Cardiovasculares/diagnóstico , Desenho de Equipamento , Humanos , Doenças Retinianas/diagnóstico , Dermatopatias/diagnóstico , Tomografia de Coerência Óptica/instrumentação
5.
Opt Express ; 18(15): 15820-31, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20720964

RESUMO

While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from chromatic dispersion in standard optical fiber. We developed a novel light source with a tapered amplifier as gain medium, and investigated the FDML performance comparing two fiber delay lines with different dispersion properties. We introduced an additional gain element into the resonator, and thereby achieved stable FDML operation, exploiting the full bandwidth of the tapered amplifier despite high dispersion. The light source operates at a repetition rate of 116 kHz with an effective average output power in excess of 30 mW. With a total sweep range of 70 nm, we achieved an axial resolution of 15 microm in air (approximately 11 microm in tissue) in OCT measurements. As our work shows, tapered amplifiers are suitable gain media for swept sources at 1050 nm with increased output power, while high gain counteracts dispersion effects in an FDML laser.


Assuntos
Amplificadores Eletrônicos , Análise de Fourier , Luz , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Cucumis/citologia , Humanos , Interferometria , Pele/citologia , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...