Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 8: 105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133693

RESUMO

Microelectromechanical system (MEMS) devices, such as accelerometers, are widely used across industries, including the automotive, consumer electronics, and medical industries. MEMS are efficiently produced at very high volumes using large-scale semiconductor manufacturing techniques. However, these techniques are not viable for the cost-efficient manufacturing of specialized MEMS devices at low- and medium-scale volumes. Thus, applications that require custom-designed MEMS devices for markets with low- and medium-scale volumes of below 5000-10,000 components per year are extremely difficult to address efficiently. The 3D printing of MEMS devices could enable the efficient realization and production of MEMS devices at these low- and medium-scale volumes. However, current micro-3D printing technologies have limited capabilities for printing functional MEMS. Herein, we demonstrate a functional 3D-printed MEMS accelerometer using 3D printing by two-photon polymerization in combination with the deposition of a strain gauge transducer by metal evaporation. We characterized the responsivity, resonance frequency, and stability over time of the MEMS accelerometer. Our results demonstrate that the 3D printing of functional MEMS is a viable approach that could enable the efficient realization of a variety of custom-designed MEMS devices, addressing new application areas that are difficult or impossible to address using conventional MEMS manufacturing.

2.
Chem Commun (Camb) ; 56(90): 14043-14046, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33103685

RESUMO

We elucidate the wavelength dependence of a photocycloaddition by (i) accessing action plots dependent on the reactivity relative to the number of absorbed photons, (ii) establishing the effect on substrate concentration on photochemical reactivity and (iii) determining wavelength-dependent reactivity as a function of the solvent environment, comparing acetonitrile with dimethyl sulfoxide.

3.
Chem Commun (Camb) ; 55(66): 9877-9880, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31364618

RESUMO

We introduce a chemically λ-orthogonal bichromophore triggered simply by different colours of light, enabling two different photochemical reactions in one molecule. Uniquely, the short wavelength (λ = 314 nm) does not trigger the red-shifted reaction system (λ = 416 nm), opening possibilities for the light controlled gating of specific molecular sites independent of wavelength.

4.
Adv Mater ; 31(8): e1807288, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30614578

RESUMO

A platform technology for multimaterial photoresists that can be orthogonally cured by disparate colors of light is introduced. The resist's photochemistry is designed such that one wavelength selectively activates the crosslinking of one set of macromolecules, while a different wavelength initiates network formation of a different set of chains. Each wavelength is thus highly selective towards a specific photoligation reaction within the resist. Critically, the shorter wavelength does not induce ligation of the longer wavelength selective species within the same resist mixture, defined as "wavelength orthogonality." Uniquely, this dual-color addressable resist system allows generating spatially resolved soft matter materials by simply selecting the curing wavelength, thus constituting a wavelength-orthogonal multimaterial resist with applications ranging from coatings to 3D additive manufacturing of multimaterial architectures.

5.
J Am Chem Soc ; 140(30): 9551-9557, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29965750

RESUMO

Emulating nature's protein paradigm, single-chain nanoparticles (SCNP) are an emerging class of nanomaterials. Synthetic access to SCNPs is limited by ultralow concentrations, demanding reaction conditions, and complex isolation procedures after single-chain collapse. Herein, we exploit the visible light photodimerization of styrylpyrene units as chain folding mechanism. Critically, their positioning along the polymer chain creates a confined environment, increasing the photocycloaddition quantum yields dramatically, enabling single-chain folding at unrivaled high concentrations without subsequent purification. Importantly, the enhanced photoreactivity allows for single-chain folding at λ = 445 nm LED-irradiation within minutes as well as via ambient light, enabling an unprecedented folding system. The herein demonstrated enhancement of quantum yields by steric confinement serves as a blueprint for all photochemical ligation systems.

6.
Angew Chem Int Ed Engl ; 57(8): 2036-2045, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29064612

RESUMO

Chemical reactions are classically controlled by the judicious choice of functional groups as well as external factors such as temperature and catalysts. However, the use of light-induced reactions not only offers precise temporal and spatial control, but critically allows highly specific reaction channels to be selectively addressed through wavelength and intensity, thereby enabling targeted covalent bonds to be made and broken. Photoreversible cycloadditions are the most promising candidates to seize the outlined potential upon selective cyclization and cycloreversion, but are today still far from fulfilling these expectations. The current Minireview critically explores the current challenges in the application of photoreversible cycloadditions and discusses the steps necessary to realize their potential in molecular biology, biomimetic systems, 3D laser lithographic processes, and advanced soft matter materials with reprogrammable and self-healing properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...