Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Dev Biol ; 13: 22, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23682742

RESUMO

BACKGROUND: Toxic substances like heavy metals can inhibit and disrupt the normal embryonic development of organisms. Exposure to platinum during embryogenesis has been shown to lead to a "one fell swoop" internalization of the shell in the ramshorn snail Marisa cornuarietis, an event which has been discussed to be possibly indicative of processes in evolution which may result in dramatic changes in body plans. RESULTS: Whereas at usual cultivation temperature, 26°C, platinum inhibits the growth of both shell gland and mantle edge during embryogenesis leading to an internalization of the mantle and, thus, also of the shell, higher temperatures induce a re-start of the differential growth of the mantle edge and the shell gland after a period of inactivity. Here, developing embryos exhibit a broad spectrum of shell forms: in some individuals only the ventral part of the visceral sac is covered while others develop almost "normal" shells. Histological studies and scanning electron microscopy images revealed platinum to inhibit the differential growth of the shell gland and the mantle edge, and elevated temperature (28 - 30°C) to mitigate this platinum effect with varying efficiency. CONCLUSION: We could show that the formation of internal, external, and intermediate shells is realized within the continuum of a developmental gradient defined by the degree of differential growth of the embryonic mantle edge and shell gland. The artificially induced internal and intermediate shells are first external and then partly internalized, similar to internal shells found in other molluscan groups.


Assuntos
Caramujos/fisiologia , Animais , Desenvolvimento Embrionário , Caramujos/embriologia
2.
J Morphol ; 273(8): 830-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22467435

RESUMO

To evaluate the threat that anthropogenic substances pose to animals when they are emitted into the environment, tests like the invertebrate embryo toxicity test with the ramshorn snail Marisa cornuarietis have been developed. These tests are used to investigate substances like the heavy metal platinum (Pt) that is used in catalytic converters and is gradually released in car exhausts. In 2010, our group reported that high Pt concentrations cause body plan alterations in snails and prevent the formation of an external shell during M. cornuarietis embryogenesis. Now, this study presents scanning-electron micrographs and histological sections of platinum(2+) (Pt(2+))-treated and untreated M. cornuarietis embryos and compares "normally" developing and "shell-less" embryos during embryogenesis, to reveal the exact course of events that lead to this body plan shift. Both groups showed similar development until the onset of torsion 70- to 82-h postfertilization. In the Pt(2+)-exposed embryos, the rudimentary shell gland (=anlage of both shell gland and mantle, which usually evaginates, grows, and eventually covers the visceral sac) does not spread across the visceral sac but remains on its ventral side. Without the excessive growth of the shell gland, a horizontal rotation of the visceral sac relative to head and foot does not occur, as being normal during the process of torsion.


Assuntos
Platina/toxicidade , Caramujos/efeitos dos fármacos , Poluentes da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Metais Pesados , Microscopia Eletrônica de Varredura , Caramujos/embriologia , Testes de Toxicidade
3.
Evol Dev ; 12(5): 474-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20883216

RESUMO

The archetypal body plan of conchiferan molluscs is characterized by an external calcareous shell, though internalization of shells has evolved independently in a number of molluscan clades, including gastropod families. In gastropods, the developmental process of torsion is regarded as a hallmark that is associated with a new anatomical configuration. This configuration is present in extant prosobranch gastropod species, which predominantly bear external shells. Here, we show that short-term exposure to platinum during development uncouples at least two of the processes associated with torsion of the freshwater snail Marisa cornuarietis. That is, the anus of the treated snails is located anteriorly, but the gill and the designated mantle tissue remains in a posterior location, thus preventing the formation of an external shell. In contrast to the prosobranchian archetype, platinum treatment results in the formation of a posterior gill and a cone-shaped internal shell, which persists across the lifetime. This first finding of artificially induced snail-slug conversion was also seen in the pulmonate snail Planorbarius corneus and demonstrates that selective alteration of embryonic key processes can result in fundamental changes of an existing body plan and-if altered regulation is inherited-may give rise to a new one.


Assuntos
Padronização Corporal/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Platina/toxicidade , Caramujos/efeitos dos fármacos , Animais , Embrião não Mamífero/ultraestrutura , Caramujos/anatomia & histologia , Caramujos/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...