Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathog Immun ; 9(1): 108-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765786

RESUMO

Background: Latency reversing agents (LRAs) such as protein kinase C (PKC) modulators can reduce rebound-competent HIV reservoirs in small animal models. Furthermore, administration of natural killer (NK) cells following LRA treatment improves this reservoir reduction. It is currently unknown why the combination of a PKC modulator and NK cells is so potent and whether exposure to PKC modulators may augment NK cell function in some way. Methods: Primary human NK cells were treated with PKC modulators (bryostatin-1, prostratin, or the designed, synthetic bryostatin-1 analog SUW133), and evaluated by examining expression of activation markers by flow cytometry, analyzing transcriptomic profiles by RNA sequencing, measuring cytotoxicity by co-culturing with K562 cells, assessing cytokine production by Luminex assay, and examining the ability of cytokines and secreted factors to independently reverse HIV latency by co-culturing with Jurkat-Latency (J-Lat) cells. Results: PKC modulators increased expression of proteins involved in NK cell activation. Transcriptomic profiles from PKC-treated NK cells displayed signatures of cellular activation and enrichment of genes associated with the NFκB pathway. NK cell cytotoxicity was unaffected by prostratin but significantly decreased by bryostatin-1 and SUW133. Cytokines from PKC-stimulated NK cells did not induce latency reversal in J-Lat cell lines. Conclusions: Although PKC modulators have some significant effects on NK cells, their contribution in "kick and kill" strategies is likely due to upregulating HIV expression in CD4+ T cells, not directly enhancing the effector functions of NK cells. This suggests that PKC modulators are primarily augmenting the "kick" rather than the "kill" arm of this HIV cure approach.

2.
Cell Host Microbe ; 31(4): 571-573, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37054675

RESUMO

The weeks following HIV acquisition are a critical time when the virus causes significant immunological damage and establishes long-term latent reservoirs. A recent study in Immunity by Gantner et al. uses single-cell analysis to explore these key early infection events, providing insights into early HIV pathogenesis and reservoir formation.


Assuntos
Infecções por HIV , Humanos , Latência Viral , Linfócitos T CD4-Positivos
3.
Virology ; 581: 8-14, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842270

RESUMO

HIV can establish a long-lived latent infection in cells harboring integrated non-expressing proviruses. Latency reversing agents (LRAs), including protein kinase C (PKC) modulators, can induce expression of latent HIV, thereby reducing the latent reservoir in animal models. However, PKC modulators such as bryostatin-1 also cause cytokine upregulation in peripheral blood mononuclear cells (PBMCs), including cytokines that might independently reverse HIV latency. To determine whether cytokines induced by PKC modulators contribute to latency reversal, primary human PBMCs were treated with bryostatin-1 or the bryostatin analog SUW133, a superior LRA, and supernatant was collected. As anticipated, LRA-treated cell supernatant contained increased levels of cytokines compared to untreated cell supernatant. However, exposure of latently-infected cells with this supernatant did not result in latency reactivation. These results indicate that PKC modulators do not have significant indirect effects on HIV latency reversal in vitro and thus are targeted in their latency reversing ability.


Assuntos
Infecções por HIV , HIV-1 , Animais , Humanos , Latência Viral , Briostatinas/farmacologia , Leucócitos Mononucleares , Linfócitos T CD4-Positivos , HIV-1/fisiologia , Citocinas/metabolismo , Ativação Viral
4.
Front Immunol ; 13: 905773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693831

RESUMO

Approximately 38 million people were living with human immunodeficiency virus (HIV) in 2020 and 53% of those infected were female. A variety of virological and immunological sex-associated differences (sexual dimorphism) in HIV infection have been recognized in males versus females. Social, behavioral, and societal influences play an important role in how the HIV pandemic has affected men and women differently. However, biological factors including anatomical, physiologic, hormonal, and genetic differences in sex chromosomes can each contribute to the distinct characteristics of HIV infection observed in males versus females. One striking example of this is the tendency for women to have lower HIV plasma viral loads than their male counterparts early in infection, though both progress to AIDS at similar rates. Sex differences in acquisition of HIV, innate and adaptive anti-HIV immune responses, efficacy/suitability of specific antiretroviral drugs, and viral pathogenesis have all been identified. Sex differences also have the potential to affect viral persistence, latency, and cure approaches. In this brief review, we summarize the major biological male/female sex differences in HIV infection and their importance to viral acquisition, pathogenesis, treatment, and cure efforts.


Assuntos
Infecções por HIV , Antirretrovirais/uso terapêutico , Feminino , Humanos , Masculino , Caracteres Sexuais
5.
Nat Commun ; 13(1): 121, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013215

RESUMO

HIV is difficult to eradicate due to the persistence of a long-lived reservoir of latently infected cells. Previous studies have shown that natural killer cells are important to inhibiting HIV infection, but it is unclear whether the administration of natural killer cells can reduce rebound viremia when anti-retroviral therapy is discontinued. Here we show the administration of allogeneic human peripheral blood natural killer cells delays viral rebound following interruption of anti-retroviral therapy in humanized mice infected with HIV-1. Utilizing genetically barcoded virus technology, we show these natural killer cells efficiently reduced viral clones rebounding from latency. Moreover, a kick and kill strategy comprised of the protein kinase C modulator and latency reversing agent SUW133 and allogeneic human peripheral blood natural killer cells during anti-retroviral therapy eliminated the viral reservoir in a subset of mice. Therefore, combinations utilizing latency reversal agents with targeted cellular killing agents may be an effective approach to eradicating the viral reservoir.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/terapia , HIV-1/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Inibidores de Proteínas Quinases/farmacologia , Viremia/terapia , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/virologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Técnicas de Cocultura , Feminino , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Células Matadoras Naturais/transplante , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase C/genética , Proteína Quinase C/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/virologia , Carga Viral/efeitos dos fármacos , Viremia/genética , Viremia/imunologia , Viremia/virologia , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
Future Virol ; 16(2): 75-77, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35145561
7.
Cell Rep Med ; 1(9): 100162, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33377133

RESUMO

HIV latency prevents cure of infection with antiretroviral therapy (ART) alone. One strategy for eliminating latently infected cells involves the induction of viral protein expression via latency-reversing agents (LRAs), allowing killing of host cells by viral cytopathic effects or immune effector mechanisms. Here, we combine a barcoded HIV approach and a humanized mouse model to study the effects of a designed, synthetic protein kinase C modulating LRA on HIV rebound. We show that administration of this compound during ART results in a delay in rebound once ART is stopped. Furthermore, the rebounding virus appears composed of a smaller number of unique barcoded viruses than occurs in control-treated animals, suggesting that some reservoir cells that would have contributed virus to the rebound process are eliminated by LRA administration. These data support the use of barcoded virus to study rebound and suggest that LRAs may be useful in HIV cure efforts.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Humanos , Camundongos , Proteína Quinase C/farmacologia , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
Cell Rep Med ; 1(3): 100037, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33205060

RESUMO

"Shock and kill" strategies focus on purging the latent HIV-1 reservoir by treating infected individuals with therapeutics that activate the latent virus and subsequently eliminating infected cells. We have previously reported that induction of non-canonical nuclear factor κB (NF-κB) signaling through a class of small-molecule antagonists known as Smac mimetics can reverse HIV-1 latency. Here, we describe the development of Ciapavir (SBI-0953294), a molecule specifically optimized for HIV-1 latency reversal that was found to be more efficacious as a latency-reversing agent than other Smac mimetics under clinical development for cancer. Critically, this molecule induced activation of HIV-1 reservoirs in vivo in a bone marrow, liver, thymus (BLT) humanized mouse model without mediating systemic T cell activation. This study provides proof of concept for the in vivo efficacy and safety of Ciapavir and indicates that Smac mimetics can constitute a critical component of a safe and efficacious treatment strategy to eliminate the latent HIV-1 reservoir.


Assuntos
Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Medula Óssea/efeitos dos fármacos , Células Cultivadas , Infecções por HIV/metabolismo , Soropositividade para HIV/tratamento farmacológico , Humanos , Fígado/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Bibliotecas de Moléculas Pequenas/farmacologia , Linfócitos T/efeitos dos fármacos , Timo/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 117(20): 10688-10698, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371485

RESUMO

AIDS is a pandemic disease caused by HIV that affects 37 million people worldwide. Current antiretroviral therapy slows disease progression but does not eliminate latently infected cells, which resupply active virus, thus necessitating lifelong treatment with associated compliance, cost, and chemoexposure issues. Latency-reversing agents (LRAs) activate these cells, allowing for their potential clearance, thus presenting a strategy to eradicate the infection. Protein kinase C (PKC) modulators-including prostratin, ingenol esters, bryostatin, and their analogs-are potent LRAs in various stages of development for several clinical indications. While LRAs are promising, a major challenge associated with their clinical use is sustaining therapeutically meaningful levels of the active agent while minimizing side effects. Here we describe a strategy to address this problem based on LRA prodrugs, designed for controllable release of the active LRA after a single injection. As intended, these prodrugs exhibit comparable or superior in vitro activity relative to the parent compounds. Selected compounds induced higher in vivo expression of CD69, an activation biomarker, and, by releasing free agent over time, significantly improved tolerability when compared to the parent LRAs. More generally, selected prodrugs of PKC modulators avoid the bolus toxicities of the parent drug and exhibit greater efficacy and expanded tolerability, thereby addressing a longstanding objective for many clinical applications.


Assuntos
Fármacos Anti-HIV/farmacologia , Briostatinas/farmacologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Pró-Fármacos/farmacologia , Proteína Quinase C/metabolismo , Latência Viral/efeitos dos fármacos , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/uso terapêutico , Briostatinas/síntese química , Briostatinas/uso terapêutico , Linhagem Celular Tumoral , Células Cultivadas , Diterpenos/química , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ésteres de Forbol/química , Pró-Fármacos/síntese química , Pró-Fármacos/uso terapêutico , Proteína Quinase C/efeitos dos fármacos
10.
Nat Commun ; 11(1): 1879, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312992

RESUMO

Bryostatin 1 is a marine natural product under investigation for HIV/AIDS eradication, the treatment of neurological disorders, and enhanced CAR T/NK cell immunotherapy. Despite its promising activity, bryostatin 1 is neither evolved nor optimized for the treatment of human disease. Here we report the design, synthesis, and biological evaluation of several close-in analogs of bryostatin 1. Using a function-oriented synthesis approach, we synthesize a series of bryostatin analogs designed to maintain affinity for bryostatin's target protein kinase C (PKC) while enabling exploration of their divergent biological functions. Our late-stage diversification strategy provides efficient access to a library of bryostatin analogs, which per our design retain affinity for PKC but exhibit variable PKC translocation kinetics. We further demonstrate that select analogs potently increase cell surface expression of CD22, a promising CAR T cell target for the treatment of leukemias, highlighting the clinical potential of bryostatin analogs for enhancing targeted immunotherapies.


Assuntos
Briostatinas/biossíntese , Briostatinas/farmacologia , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Proteína Quinase C/metabolismo , Briostatinas/química , Linhagem Celular Tumoral , Humanos , Leucemia/tratamento farmacológico , Modelos Moleculares , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T
11.
Retrovirology ; 17(1): 7, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252791

RESUMO

Significant advances in the treatment of HIV infection have been made in the last three decades. Antiretroviral therapy (ART) is now potent enough to prevent virus replication and stop disease progression. However, ART alone does not cure the infection, primarily because HIV can persist in stable long-term reservoir cells including latently-infected CD4 + T cells. A central goal of the HIV research field is to devise strategies to eliminate these reservoirs and thereby develop a cure for HIV. This requires robust in vivo model systems to facilitate both the further characterization of persistent HIV reservoirs and evaluation of methods for eliminating latent virus. Humanized mice have proven to be versatile experimental models for studying many basic aspects of HIV biology. These models consist of immunodeficient mice transplanted with human cells or tissues, which allows development of a human immune system that supports robust infection with HIV. There are many potential applications for new generations of humanized mouse models in investigating HIV reservoirs and latency, but these models also involve caveats that are important to consider in experimental design and interpretation. This review briefly discusses some of the key strengths and limitations of humanized mouse models in HIV persistence studies.


Assuntos
Modelos Animais de Doenças , Infecções por HIV/virologia , Camundongos Transgênicos , Latência Viral , Animais , HIV-1/imunologia , Humanos , Camundongos , Carga Viral , Replicação Viral
12.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842333

RESUMO

Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.


Assuntos
HIV-1/imunologia , Latência Viral/imunologia , Latência Viral/fisiologia , Animais , Antirretrovirais/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Modelos Animais de Doenças , Infecções por HIV/virologia , Soropositividade para HIV/tratamento farmacológico , HIV-1/patogenicidade , Humanos , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/imunologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/imunologia , Ativação Viral , Replicação Viral
13.
Virology ; 520: 83-93, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29800728

RESUMO

HIV latency in resting CD4+ T cell represents a key barrier preventing cure of the infection with antiretroviral drugs alone. Latency reversing agents (LRAs) can activate HIV expression in latently infected cells, potentially leading to their elimination through virus-mediated cytopathic effects, host immune responses, and/or therapeutic strategies targeting cells actively expressing virus. We have recently described several structurally simplified analogs of the PKC modulator LRA bryostatin (termed bryologs) designed to improve synthetic accessibility, tolerability in vivo, and efficacy in inducing HIV latency reversal. Here we report the comparative performance of lead bryologs, including their effects in reducing cell surface expression of HIV entry receptors, inducing proinflammatory cytokines, inhibiting short-term HIV replication, and synergizing with histone deacetylase inhibitors to reverse HIV latency. These data provide unique insights into structure-function relationships between A- and B-ring bryolog modifications and activities in primary cells, and suggest that bryologs represent promising leads for preclinical advancement.


Assuntos
Briostatinas/química , Briostatinas/farmacologia , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Inibidores de Histona Desacetilases , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
PLoS Pathog ; 13(9): e1006575, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28934369

RESUMO

The ability of HIV to establish a long-lived latent infection within resting CD4+ T cells leads to persistence and episodic resupply of the virus in patients treated with antiretroviral therapy (ART), thereby preventing eradication of the disease. Protein kinase C (PKC) modulators such as bryostatin 1 can activate these latently infected cells, potentially leading to their elimination by virus-mediated cytopathic effects, the host's immune response and/or therapeutic strategies targeting cells actively expressing virus. While research in this area has focused heavily on naturally-occurring PKC modulators, their study has been hampered by their limited and variable availability, and equally significantly by sub-optimal activity and in vivo tolerability. Here we show that a designed, synthetically-accessible analog of bryostatin 1 is better-tolerated in vivo when compared with the naturally-occurring product and potently induces HIV expression from latency in humanized BLT mice, a proven and important model for studying HIV persistence and pathogenesis in vivo. Importantly, this induction of virus expression causes some of the newly HIV-expressing cells to die. Thus, designed, synthetically-accessible, tunable, and efficacious bryostatin analogs can mediate both a "kick" and "kill" response in latently-infected cells and exhibit improved tolerability, therefore showing unique promise as clinical adjuvants for HIV eradication.


Assuntos
Fármacos Anti-HIV/farmacologia , Briostatinas/farmacologia , Linfócitos T CD4-Positivos/virologia , HIV-1/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Briostatinas/química , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/isolamento & purificação , Humanos , Ativação Viral/efeitos dos fármacos
15.
Annu Rev Virol ; 4(1): 393-412, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28746819

RESUMO

Human immunodeficiency virus (HIV) remains a significant source of morbidity and mortality worldwide. No effective vaccine is available to prevent HIV transmission, and although antiretroviral therapy can prevent disease progression, it does not cure HIV infection. Substantial effort is therefore currently directed toward basic research on HIV pathogenesis and persistence and developing methods to stop the spread of the HIV epidemic and cure those individuals already infected with HIV. Humanized mice are versatile tools for the study of HIV and its interaction with the human immune system. These models generally consist of immunodeficient mice transplanted with human cells or reconstituted with a near-complete human immune system. Here, we describe the major humanized mouse models currently in use, and some recent advances that have been made in HIV research/therapeutics using these models.


Assuntos
Modelos Animais de Doenças , Infecções por HIV/virologia , HIV-1/fisiologia , Camundongos , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/virologia , Animais , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Síndromes de Imunodeficiência , Transfusão de Leucócitos , Camundongos SCID
16.
PLoS One ; 10(9): e0137951, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26375588

RESUMO

Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-ß promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Replicação Viral/imunologia , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Citocinas/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Transdução de Sinais
17.
Cell Host Microbe ; 17(2): 141-2, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25674977

RESUMO

HIV can enter a state of latency that allows it to persist for decades in antiretroviral drug-treated patients. In a recent Nature paper, Deng et al. (2015) show that this latent reservoir also contains a large number of cytotoxic T lymphocyte escape mutants, presenting another challenge to HIV cure efforts.


Assuntos
Genes Dominantes/genética , Genes Virais/genética , HIV-1/genética , HIV-1/imunologia , Mutação/genética , Linfócitos T Citotóxicos/imunologia , Latência Viral/imunologia , Animais , Feminino , Humanos , Masculino
18.
Mol Ther Nucleic Acids ; 4: e227, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25689223

RESUMO

Transplantation of hematopoietic stem/progenitor cells (HSPC) modified with a lentiviral vector bearing a potent nontoxic short hairpin RNA (sh1005) directed to the HIV coreceptor CCR5 is capable of continuously producing CCR5 downregulated CD4+ T lymphocytes. Here, we characterized HIV-1 resistance of the sh1005-modified CD4+ T lymphocytes in vivo in humanized bone marrow/liver/thymus (hu BLT) mice. The sh1005-modified CD4+ T lymphocytes were positively selected in CCR5-tropic HIV-1-challenged mice. The sh1005-modified memory CD4+ T lymphocytes (the primary target of CCR5-tropic HIV-1) expressing sh1005 were maintained in lymphoid tissues in CCR5-tropic HIV-1-challenged mice. Frequencies of HIV-1 p24 expressing cells were significantly reduced in the sh1005-modified splenocytes by ex vivo cell stimulation confirming that CCR5 downregulated sh1005 modified cells are protected from viral infection. These results demonstrate that stable CCR5 downregulation through genetic modification of human HSPC by lentivirally delivered sh1005 is highly effective in providing HIV-1 resistance. Our results provide in vivo evidence in a relevant small animal model that sh1005 is a potent early-step anti-HIV reagent that has potential as a novel anti-HIV-1 HSPC gene therapeutic reagent for human applications.

19.
Virology ; 479-480: 297-309, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25680625

RESUMO

Many important aspects of human retroviral infections cannot be fully evaluated using only in vitro systems or unmodified animal models. An alternative approach involves the use of humanized mice, which consist of immunodeficient mice that have been transplanted with human cells and/or tissues. Certain humanized mouse models can support robust infection with human retroviruses including different strains of human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV). These models have provided wide-ranging insights into retroviral biology, including detailed information on primary infection, in vivo replication and pathogenesis, latent/persistent reservoir formation, and novel therapeutic interventions. Here we describe the humanized mouse models that are most commonly utilized to study retroviral infections, and outline some of the important discoveries that these models have produced during several decades of intensive research.


Assuntos
Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Retroviridae/fisiologia , Animais , Humanos , Camundongos SCID , Retroviridae/crescimento & desenvolvimento , Retroviridae/patogenicidade , Latência Viral , Replicação Viral
20.
For Immunopathol Dis Therap ; 6(1-2): 91-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28191361

RESUMO

Antiretroviral therapy (ART) can reduce HIV viral loads to undetectable levels and prevent disease progression. However, HIV persists in rare cellular reservoirs within ART-treated patients and rapidly reemerges if ART is stopped. Latently infected CD4+ T cells represent a major reservoir of HIV that persists during ART. Therefore, a cure for HIV must include methods that either permanently inactivate or eliminate latent virus. Experimental methods under investigation for eliminating latently infected cells include transplantation/gene therapy approaches intended to deplete the infected cells and replace them with HIV-resistant ones, and DNA editing strategies that are capable of damaging or excising non-expressing HIV proviruses. Alternatively, "activation-elimination," also known as "shock and kill," approaches aim to induce expression of latent virus, allowing the virus to be eliminated by viral cytopathic effects, immune effector mechanisms, or additional cells/antibodies that specifically target and kill cells expressing HIV proteins. Here, we describe these experimental approaches for eliminating latent HIV along with other recent advances in HIV cure research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...