Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37440306

RESUMO

Inhibitory CD4+ T cells have been linked with suboptimal immune responses against cancer and pathogen chronicity. However, the mechanisms that underpin the development of these regulatory cells, especially in the context of ongoing antigen exposure, have remained obscure. To address this knowledge gap, we undertook a comprehensive functional, phenotypic, and transcriptomic analysis of interleukin (IL)-10-producing CD4+ T cells induced by chronic infection with murine cytomegalovirus (MCMV). We identified these cells as clonally expanded and highly differentiated TH1-like cells that developed in a T-bet-dependent manner and coexpressed arginase-1 (Arg1), which promotes the catalytic breakdown of L-arginine. Mice lacking Arg1-expressing CD4+ T cells exhibited more robust antiviral immunity and were better able to control MCMV. Conditional deletion of T-bet in the CD4+ lineage suppressed the development of these inhibitory cells and also enhanced immune control of MCMV. Collectively, these data elucidated the ontogeny of IL-10-producing CD4+ T cells and revealed a previously unappreciated mechanism of immune regulation, whereby viral persistence was facilitated by the site-specific delivery of Arg1.


Assuntos
Citomegalovirus , Muromegalovirus , Camundongos , Animais , Interleucina-10 , Linfócitos T CD4-Positivos , Arginase/genética , Muromegalovirus/fisiologia
2.
Immunology ; 164(2): 279-291, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34003499

RESUMO

Cytomegalovirus (CMV) induction of large frequencies of highly functional memory T cells has attracted much interest in the utility of CMV-based vaccine vectors, with exciting preclinical data obtained in models of infectious diseases and cancer. However, pathogenesis of human CMV (HCMV) remains a concern. Attenuated CMV-based vectors, such as replication- or spread-deficient viruses, potentially offer an alternative to fully replicating vectors. However, it is not well understood how CMV attenuation impacts vector immunogenicity, particularly when administered via relevant routes of immunization such as the skin. Herein, we used the murine cytomegalovirus (MCMV) model to investigate the impact of vector attenuation on T-cell memory formation following subcutaneous administration. We found that the spread-deficient virus (ΔgL-MCMV) was impaired in its ability to induce memory CD8+ T cells reactive to some (M38, IE1) but not all (IE3) viral antigens. Impaired-memory T-cell development was associated with a preferential and pronounced loss of polyfunctional (IFN-γ+ TNF-α+ ) T cells and also reduced accumulation of TCF1+ T cells, and was not rescued by increasing the dose of replication-defective MCMV. Finally, whilst vector attenuation reduced dendritic cell (DC) recruitment to skin-draining lymph nodes, systematic depletion of multiple DC subsets during acute subcutaneous MCMV infection had a negligible impact on T-cell memory formation, implying that attenuated responses induced by replication-deficient vectors were likely not a consequence of impaired initial DC activation. Thus, overall, these data imply that the choice of antigen and/or cloning strategy of exogenous antigen in combination with the route of immunization may influence the ability of attenuated CMV vectors to induce robust functional T-cell memory.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Dendríticas/imunologia , Memória Imunológica/imunologia , Pele/imunologia , Replicação Viral/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/virologia , Infecções por Citomegalovirus/virologia , Células Dendríticas/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pele/virologia
3.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075938

RESUMO

Recognition of influenza A virus (IAV) by the innate immune system triggers pathways that restrict viral replication, activate innate immune cells, and regulate adaptive immunity. However, excessive innate immune activation can exaggerate disease. The pathways promoting excessive activation are incompletely understood, with limited experimental models to investigate the mechanisms driving influenza virus-induced inflammation in humans. Interferon regulatory factor 5 (IRF5) is a transcription factor that plays important roles in the induction of cytokines after viral sensing. In an in vivo model of IAV infection, IRF5 deficiency reduced IAV-driven immune pathology and associated inflammatory cytokine production, specifically reducing cytokine-producing myeloid cell populations in Irf5-/- mice but not impacting type 1 interferon (IFN) production or virus replication. Using cytometry by time of flight (CyTOF), we identified that human lung IRF5 expression was highest in cells of the myeloid lineage. To investigate the role of IRF5 in mediating human inflammatory responses by myeloid cells to IAV, we employed human-induced pluripotent stem cells (hIPSCs) with biallelic mutations in IRF5, demonstrating for the first time that induced pluripotent stem cell-derived dendritic cells (iPS-DCs) with biallelic mutations can be used to investigate the regulation of human virus-induced immune responses. Using this technology, we reveal that IRF5 deficiency in human DCs, or macrophages, corresponded with reduced virus-induced inflammatory cytokine production, with IRF5 acting downstream of Toll-like receptor 7 (TLR7) and, possibly, retinoic acid-inducible gene I (RIG-I) after viral sensing. Thus, IRF5 acts as a regulator of myeloid cell inflammatory cytokine production during IAV infection in mice and humans and drives immune-mediated viral pathogenesis independently of type 1 IFN and virus replication.IMPORTANCE The inflammatory response to influenza A virus (IAV) participates in infection control but contributes to disease severity. After viral detection, intracellular pathways are activated, initiating cytokine production, but these pathways are incompletely understood. We show that interferon regulatory factor 5 (IRF5) mediates IAV-induced inflammation and, in mice, drives pathology. This was independent of antiviral type 1 IFN and virus replication, implying that IRF5 could be specifically targeted to treat influenza virus-induced inflammation. We show for the first time that human iPSC technology can be exploited in genetic studies of virus-induced immune responses. Using this technology, we deleted IRF5 in human myeloid cells. These IRF5-deficient cells exhibited impaired influenza virus-induced cytokine production and revealed that IRF5 acts downstream of Toll-like receptor 7 and possibly retinoic acid-inducible gene I. Our data demonstrate the importance of IRF5 in influenza virus-induced inflammation, suggesting that genetic variation in the IRF5 gene may influence host susceptibility to viral diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/imunologia , Vírus da Influenza A/imunologia , Fatores Reguladores de Interferon/metabolismo , Imunidade Adaptativa/fisiologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/fisiologia , Vírus da Influenza A/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Fatores Reguladores de Interferon/imunologia , Interferon Tipo I/metabolismo , Pulmão/virologia , Macrófagos/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia , Replicação Viral/fisiologia
4.
J Immunol ; 202(3): 943-955, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30635396

RESUMO

Candidate vaccines designed to generate T cell-based immunity are typically vectored by nonpersistent viruses, which largely fail to elicit durable effector memory T cell responses. This limitation can be overcome using recombinant strains of CMV. Proof-of-principle studies have demonstrated the potential benefits of this approach, most notably in the SIV model, but safety concerns require the development of nonreplicating alternatives with comparable immunogenicity. In this study, we show that IL-33 promotes the accumulation and recall kinetics of circulating and tissue-resident memory T cells in mice infected with murine CMV. Using a replication-deficient murine CMV vector, we further show that exogenous IL-33 boosts vaccine-induced memory T cell responses, which protect against subsequent heterologous viral challenge. These data suggest that IL-33 could serve as a useful adjuvant to improve the efficacy of vaccines based on attenuated derivatives of CMV.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra Citomegalovirus/imunologia , Memória Imunológica , Interleucina-33/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citomegalovirus , Interleucina-33/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus , Vacinas Atenuadas/imunologia
5.
PLoS One ; 13(5): e0197596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768502

RESUMO

Interferon lambda (IFNλ) is a group of cytokines that belong to the IL-10 family. They exhibit antiviral activities against certain viruses during infection of the liver and mucosal tissues. Here we report that IFNλ restricts in vitro replication of the ß-herpesvirus murine cytomegalovirus (mCMV). However, IFNλR1-deficient (Ifnλr1-/-) mice were not preferentially susceptible to mCMV infection in vivo during acute infection after systemic or mucosal challenge, or during virus persistence in the mucosa. Instead, our studies revealed that IFNλ influences NK cell responses during mCMV infection. Ifnλr1-/- mice exhibited defective development of conventional interferon-gamma (IFNγ)-expressing NK cells in the spleen during mCMV infection whereas accumulation of granzyme B-expressing NK cells was unaltered. In vitro, development of splenic IFNγ+ NK cells following stimulation with IL-12 or, to a lesser extent, IL-18 was abrogated by IFNλR1-deficiency. Thus, IFNλ regulates NK cell responses during mCMV infection and restricts virus replication in vitro but is redundant in the control of acute and persistent mCMV replication within mucosal and non-mucosal tissues.


Assuntos
Infecções por Herpesviridae/imunologia , Interferon gama/metabolismo , Interferons/metabolismo , Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Animais , Feminino , Técnicas In Vitro , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Replicação Viral
6.
Nucleic Acids Res ; 45(20): 11673-11683, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981850

RESUMO

The HIRA histone chaperone complex deposits histone H3.3 into nucleosomes in a DNA replication- and sequence-independent manner. As herpesvirus genomes enter the nucleus as naked DNA, we asked whether the HIRA chaperone complex affects herpesvirus infection. After infection of primary cells with HSV or CMV, or transient transfection with naked plasmid DNA, HIRA re-localizes to PML bodies, sites of cellular anti-viral activity. HIRA co-localizes with viral genomes, binds to incoming viral and plasmid DNAs and deposits histone H3.3 onto these. Anti-viral interferons (IFN) specifically induce HIRA/PML co-localization at PML nuclear bodies and HIRA recruitment to IFN target genes, although HIRA is not required for IFN-inducible expression of these genes. HIRA is, however, required for suppression of viral gene expression, virus replication and lytic infection and restricts murine CMV replication in vivo. We propose that the HIRA chaperone complex represses incoming naked viral DNAs through chromatinization as part of intrinsic cellular immunity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Viral/metabolismo , Herpesvirus Humano 1/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/virologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Chaperonas de Histonas/genética , Chaperonas de Histonas/imunologia , Humanos , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/virologia , Camundongos Endogâmicos C57BL , Muromegalovirus/genética , Muromegalovirus/fisiologia , Proteína da Leucemia Promielocítica/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
7.
J Clin Invest ; 127(9): 3521-3526, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28783043

RESUMO

Mutations in the human NBEAL2 gene cause gray platelet syndrome (GPS), a bleeding diathesis characterized by a lack of α granules in platelets. The functions of the NBEAL2 protein have not been explored outside platelet biology, but there are reports of increased frequency of infection and abnormal neutrophil morphology in patients with GPS. We therefore investigated the role of NBEAL2 in immunity by analyzing the phenotype of Nbeal2-deficient mice. We found profound abnormalities in the Nbeal2-deficient immune system, particularly in the function of neutrophils and NK cells. Phenotyping of Nbeal2-deficient neutrophils showed a severe reduction in granule contents across all granule subsets. Despite this, Nbeal2-deficient neutrophils had an enhanced phagocyte respiratory burst relative to Nbeal2-expressing neutrophils. This respiratory burst was associated with increased expression of cytosolic components of the NADPH oxidase complex. Nbeal2-deficient NK cells were also dysfunctional and showed reduced degranulation. These abnormalities were associated with increased susceptibility to both bacterial (Staphylococcus aureus) and viral (murine CMV) infection in vivo. These results define an essential role for NBEAL2 in mammalian immunity.


Assuntos
Proteínas Sanguíneas/metabolismo , Células Matadoras Naturais/metabolismo , Mutação , Neutrófilos/metabolismo , Animais , Plaquetas/metabolismo , Proteínas Sanguíneas/genética , Citosol/metabolismo , Síndrome da Plaqueta Cinza/genética , Humanos , Sistema Imunitário , Imunofenotipagem , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Fenótipo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus
8.
J Clin Invest ; 127(4): 1463-1474, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28240600

RESUMO

The antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) inhibits cell entry of a number of viruses, and genetic diversity within IFITM3 determines susceptibility to viral disease in humans. Here, we used the murine CMV (MCMV) model of infection to determine that IFITM3 limits herpesvirus-associated pathogenesis without directly preventing virus replication. Instead, IFITM3 promoted antiviral cellular immunity through the restriction of virus-induced lymphopenia, apoptosis-independent NK cell death, and loss of T cells. Viral disease in Ifitm3-/- mice was accompanied by elevated production of cytokines, most notably IL-6. IFITM3 inhibited IL-6 production by myeloid cells in response to replicating and nonreplicating virus as well as following stimulation with the TLR ligands Poly(I:C) and CpG. Although IL-6 promoted virus-specific T cell responses, uncontrolled IL-6 expression in Ifitm3-/- mice triggered the loss of NK cells and subsequently impaired control of MCMV replication. Thus, IFITM3 represents a checkpoint regulator of antiviral immunity that controls cytokine production to restrict viral pathogenesis. These data suggest the utility of cytokine-targeting strategies in the treatment of virus-infected individuals with impaired IFITM3 activity.


Assuntos
Citocinas/fisiologia , Infecções por Herpesviridae/metabolismo , Proteínas de Membrana/fisiologia , Animais , Células Cultivadas , Infecções por Herpesviridae/imunologia , Imunidade Celular , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/fisiologia , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Internalização do Vírus , Replicação Viral
9.
PLoS Pathog ; 12(12): e1006050, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27926930

RESUMO

CD4+ T cells support host defence against herpesviruses and other viral pathogens. We identified that CD4+ T cells from systemic and mucosal tissues of hosts infected with the ß-herpesviridae human cytomegalovirus (HCMV) or murine cytomegalovirus (MCMV) express the regulatory cytokine interleukin (IL)-10. IL-10+CD4+ T cells co-expressed TH1-associated transcription factors and chemokine receptors. Mice lacking T cell-derived IL-10 elicited enhanced antiviral T cell responses and restricted MCMV persistence in salivary glands and secretion in saliva. Thus, IL-10+CD4+ T cells suppress antiviral immune responses against CMV. Expansion of this T-cell population in the periphery was promoted by IL-27 whereas mucosal IL-10+ T cell responses were ICOS-dependent. Infected Il27rα-deficient mice with reduced peripheral IL-10+CD4+ T cell accumulation displayed robust T cell responses and restricted MCMV persistence and shedding. Temporal inhibition experiments revealed that IL-27R signaling during initial infection was required for the suppression of T cell immunity and control of virus shedding during MCMV persistence. IL-27 production was promoted by type-I IFN, suggesting that ß-herpesviridae exploit the immune-regulatory properties of this antiviral pathway to establish chronicity. Further, our data reveal that cytokine signaling events during initial infection profoundly influence virus chronicity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Interferon Tipo I/imunologia , Interleucina-27/imunologia , Animais , Modelos Animais de Doenças , Humanos , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
PLoS Pathog ; 11(2): e1004641, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25654642

RESUMO

CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R(-/-)) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R(-/-) mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue.


Assuntos
Antígenos CD/imunologia , Infecções por Citomegalovirus/imunologia , Macrófagos/imunologia , Mucosa/imunologia , Mucosa/virologia , Animais , Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Macrófagos/metabolismo , Macrófagos/virologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos
11.
Cell Host Microbe ; 15(4): 471-83, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721575

RESUMO

During primary infection, murine cytomegalovirus (MCMV) spreads systemically, resulting in virus replication and pathology in multiple organs. This disseminated infection is ultimately controlled, but the underlying immune defense mechanisms are unclear. Investigating the role of the cytokine IL-22 in MCMV infection, we discovered an unanticipated function for neutrophils as potent antiviral effector cells that restrict viral replication and associated pathogenesis in peripheral organs. NK-, NKT-, and T cell-secreted IL-22 orchestrated antiviral neutrophil-mediated responses via induction in stromal nonhematopoietic tissue of the neutrophil-recruiting chemokine CXCL1. The antiviral effector properties of infiltrating neutrophils were directly linked to the expression of TNF-related apoptosis-inducing ligand (TRAIL). Our data identify a role for neutrophils in antiviral defense, and establish a functional link between IL-22 and the control of antiviral neutrophil responses that prevents pathogenic herpesvirus infection in peripheral organs.


Assuntos
Infecções por Herpesviridae/imunologia , Interleucinas/imunologia , Muromegalovirus/imunologia , Neutrófilos/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Animais , Antivirais , Quimiocina CXCL1/imunologia , Infecções por Herpesviridae/patologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/patogenicidade , Células T Matadoras Naturais/imunologia , Replicação Viral/imunologia , Interleucina 22
12.
Eur J Immunol ; 42(12): 3235-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22965681

RESUMO

Decline of cell-mediated immunity is often attributed to decaying T-cell numbers and their distribution in peripheral organs. This study examined the hypothesis that qualitative as well as quantitative changes contribute to the declining efficacy of CD8(+) T-cell memory. Using a model of influenza virus infection, where loss of protective CD8(+) T-cell immunity was observed 6 months postinfection, we found no decline in antigen-specific T-cell numbers or migration to the site of secondary infection. There was, however, a large reduction in antigen-specific CD8(+) T-cell degranulation, cytokine secretion, and polyfunctionality. A profound loss of high-avidity T cells over time indicated that failure to confer protective immunity resulted from the inferior functional capacity of remaining low avidity cells. These data imply that high-avidity central memory T cells wane with declining antigen levels, leaving lower avidity T cells with reduced functional capabilities.


Assuntos
Alphainfluenzavirus/imunologia , Degranulação Celular/imunologia , Movimento Celular/imunologia , Imunidade Celular , Memória Imunológica , Infecções por Orthomyxoviridae/imunologia , Animais , Linfócitos T CD8-Positivos , Citocinas/imunologia , Citocinas/metabolismo , Alphainfluenzavirus/metabolismo , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Fatores de Tempo
13.
FASEB J ; 26(8): 3575-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593543

RESUMO

Death receptor 3 (DR3, TNFRSF25), the closest family relative to tumor necrosis factor receptor 1, promotes CD4(+) T-cell-driven inflammatory disease. We investigated the in vivo role of DR3 and its ligand TL1A in viral infection, by challenging DR3-deficient (DR3(KO)) mice and their DR3(WT) littermates with the ß-herpesvirus murine cytomegalovirus or the poxvirus vaccinia virus. The phenotype and function of splenic T-cells were analyzed using flow cytometry and molecular biological techniques. We report surface expression of DR3 by naive CD8(+) T cells, with TCR activation increasing its levels 4-fold and altering the ratio of DR3 splice variants. T-cell responses were reduced up to 90% in DR3(KO) mice during acute infection. Adoptive transfer experiments indicated this was dependent on T-cell-restricted expression of DR3. DR3-dependent CD8(+) T-cell expansion was NK and CD4 independent and due to proliferation, not decreased cell death. Notably, impaired immunity in DR3(KO) hosts on a C57BL/6 background was associated with 4- to 7-fold increases in viral loads during the acute phase of infection, and in mice with suboptimal NK responses was essential for survival (37.5%). This is the first description of DR3 regulating virus-specific T-cell function in vivo and uncovers a critical role for DR3 in mediating antiviral immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Muromegalovirus/imunologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/fisiologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia , Transferência Adotiva , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Camundongos Knockout , Carga Viral
14.
J Immunol ; 187(6): 2944-52, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21849677

RESUMO

IL-10 is an immunomodulatory cytokine that acts to antagonize T cell responses elicited during acute and chronic infections. Thus, the IL-10R signaling pathway provides a potential therapeutic target in strategies aimed at combating infectious diseases. In this study, we set out to investigate whether IL-10 expression had an effect on NK cells. Murine CMV infection provides the best characterized in vivo system to evaluate the NK cell response, with NK cells being critical in the early control of acute infection. Blockade of IL-10R during acute murine CMV infection markedly reduced the accumulation of cytotoxic NK cells in the spleen and lung, a phenotype associated with a transient elevation of virus DNA load. Impaired NK cell responsiveness after IL-10R blockade was attributed to elevated levels of apoptosis observed in NK cells exhibiting an activated phenotype. Therefore, we conclude that IL-10 contributes to antiviral innate immunity during acute infection by restricting activation-induced death in NK cells.


Assuntos
Apoptose/imunologia , Infecções por Herpesviridae/imunologia , Imunidade Inata/imunologia , Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Animais , Separação Celular , Citometria de Fluxo , Interleucina-10/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/imunologia , Carga Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...