Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 958: 59-70, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110685

RESUMO

Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core.


Assuntos
Sulfatos de Condroitina/análise , Contaminação de Medicamentos , Sulfato de Queratano/análise , Animais , Proteoglicanas
2.
Appl Microbiol Biotechnol ; 98(3): 1291-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24327211

RESUMO

Streptomyces roseochromogenes is able to hydroxylate steroid compounds in different positions of their cycloalkane rings thanks to a cytochrome P-450 multi-enzyme complex. In this paper, the hydroxylation of the hydrocortisone in the 16α position, performed by bacterial whole cells, was investigated in both shake flask and fermentation conditions; the best settings for both cellular growth and transformation reaction were studied by investigating the optimal medium composition, the kinetic of conversion, the most suitable substrate concentration and the preferred addition timing. Using newly formulated malt extract- and yeast extract-based media, a 16α-hydrohydrocortisone concentration of 0.2 ± 0.01 g L(-1) was reached in shake flasks. Batch experiments in a 2-L fermentor established the reproducibility and robustness of the biotransformation, while a pulsed batch fermentation strategy allowed the production to increase up to 0.508 ± 0.01 g L(-1). By-product formation was investigated, and two new derivates of the hydrocortisone obtained during the bacterial transformation reaction and unknown so far, a C-20 hydroxy derivate and a C-21 N-acetamide one, were determined by NMR analyses.


Assuntos
Hidrocortisona/análogos & derivados , Hidrocortisona/metabolismo , Streptomyces/metabolismo , Biotransformação , Meios de Cultura/química , Hidroxilação , Reprodutibilidade dos Testes , Streptomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...