Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 97(4): 753-764, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32059999

RESUMO

Zinc fingers and homeoboxes (ZHX) proteins are heterodimeric transcriptional factors largely expressed at the cell membrane in podocytes in vivo. We found ZHX2-based heterodimers in podocytes, with ZHX2-ZHX1 predominantly at the cell membrane of the podocyte cell body, and ZHX2-ZHX3 at the slit diaphragm. In addition to changes in overall ZHX2 expression, there was increased podocyte nuclear ZHX3 and ZHX2 in patients with focal segmental glomerulosclerosis, and increased podocyte nuclear ZHX1 in patients with minimal change disease. Zhx2 deficient mice had increased podocyte ZHX1 and ZHX3 expression. Zhx2 deficient mice and podocyte specific Zhx2 overexpressing transgenic rats develop worse experimental focal segmental glomerulosclerosis than controls, with increased nuclear ZHX3 and ZHX2, respectively. By contrast, podocyte specific Zhx2 overexpressing transgenic rats develop lesser proteinuria during experimental minimal change disease due to peripheral sequestration of ZHX1 by ZHX2. Using co-immunoprecipitation, the interaction of ZHX2 with aminopeptidase A in the podocyte body cell membrane, and EPHRIN B1 in the slit diaphragm were noted to be central to upstream events in animal models of minimal change disease and focal segmental glomerulosclerosis, respectively. Mice deficient in Enpep, the gene for aminopeptidase A, and Efnb1, the gene for ephrin B1 developed worse albuminuria in glomerular disease models. Targeting aminopeptidase A in Zhx2 deficient mice with monoclonal antibodies induced albuminuria and upregulation of the minimal change disease mediator angiopoietin-like 4 through nuclear entry of ZHX1. Thus, podocyte ZHX2 imbalance is a critical factor in human glomerular disease, with minimal change disease disparities mediated mostly through ZHX1, and focal segmental glomerulosclerosis deviations through ZHX3 and ZHX2.


Assuntos
Glomerulosclerose Segmentar e Focal , Proteínas de Homeodomínio , Podócitos , Fatores de Transcrição , Animais , Genes Homeobox , Glomerulosclerose Segmentar e Focal/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Podócitos/metabolismo , Fatores de Transcrição/genética , Dedos de Zinco
2.
Am J Physiol Renal Physiol ; 316(5): F1026-F1040, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810063

RESUMO

Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5ß2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.


Assuntos
Marcação de Genes/efeitos adversos , Membrana Basal Glomerular/enzimologia , Integrases/metabolismo , Podócitos/enzimologia , Animais , Regulação da Expressão Gênica , Membrana Basal Glomerular/ultraestrutura , Integrases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Laminina/genética , Laminina/metabolismo , Proteínas de Membrana/genética , Camundongos Transgênicos , Podócitos/ultraestrutura , Regiões Promotoras Genéticas , Fatores de Tempo , Proteínas WT1/genética , Proteínas WT1/metabolismo
3.
Am J Physiol Renal Physiol ; 311(5): F831-F843, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582102

RESUMO

Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.


Assuntos
Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/patologia , Falência Renal Crônica/patologia , Podócitos/patologia , Animais , Humanos , Glomérulos Renais/patologia
4.
Am J Physiol Renal Physiol ; 311(1): F63-5, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27147672

RESUMO

Improved understanding of glomerular disease mechanisms over the past decade has led to the emergence of new and targeted therapeutic strategies for chronic kidney disease (CKD). Most promising among these are the administration of recombinant mutated human angiopoietin-like 4, sialic acid-related sugars that induce sialylation in vivo, compounds related to Bis-T-23, and immune depletion of the soluble urokinase receptor from the circulation. Taking these therapeutic strategies into clinical trials will be the first step away from repurposed and relatively toxic drugs currently used for treating kidney disease.


Assuntos
Glomérulos Renais/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/uso terapêutico , Animais , Humanos , Proteinúria/tratamento farmacológico
5.
Transl Res ; 165(4): 499-504, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25005737

RESUMO

The development of new and specific treatment options for kidney disease in general and glomerular diseases in specific has lagged behind other fields like heart disease and cancer. As a result, nephrologists have had to test and adapt therapeutics developed for other indications to treat glomerular diseases. One of the major factors contributing to this inertia has been the poor understanding of disease mechanisms. One way to elucidate these disease mechanisms is to study the association between the cardinal manifestations of glomerular diseases. Because many of these patients develop nephrotic syndrome, understanding the relationship of proteinuria, the primary driver in this syndrome, with hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, edema, and lipiduria could provide valuable insight. The recent unraveling of the relationship between proteinuria and hypertriglyceridemia mediated by free fatty acids, albumin, and the secreted glycoprotein angiopoietin-like 4 (Angptl4) offers a unique opportunity to develop novel therapeutics for glomerular diseases. In this review, the therapeutic potential of mutant forms of Angptl4 in reducing proteinuria and, as a consequence, alleviating the other manifestations of nephrotic syndrome is discussed.


Assuntos
Hipertrigliceridemia/complicações , Síndrome Nefrótica/tratamento farmacológico , Proteinúria/complicações , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Angiopoietinas/farmacologia , Humanos , Síndrome Nefrótica/etiologia , Proteínas Recombinantes
6.
Front Pharmacol ; 5: 23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24611049

RESUMO

Current drugs used to treat proteinuric disorders of the kidney have been borrowed from other branches of medicine, and are only partially effective. The discovery of a central, mechanistic role played by two different forms of the secreted glycoprotein angiopoietin-like 4 (Angptl4) in human and experimental glomerular disease has opened new treatment avenues. Localized upregulation of a hyposialylated form (lacks sialic acid residues) of Angptl4 secreted by podocytes induces the cardinal morphological and clinical manifestations of human minimal change disease, and is also being increasingly recognized as a significant contributor toward proteinuria in experimental diabetic nephropathy. Oral treatment with low doses of N-acetyl-D-mannosamine, a naturally occurring precursor of sialic acid, improves sialylation of Angptl4 in vivo, and reduces proteinuria by over 40%. By contrast, a sialylated circulating form of Angptl4, mostly secreted from skeletal muscle, heart and adipose tissue in all major primary glomerular diseases, reduces proteinuria while also causing hypertriglyceridemia. Intravenous administration of recombinant human Angptl4 mutated to avoid hypertriglyceridemia and cleavage has remarkable efficacy in reducing proteinuria by as much as 65% for 2 weeks after a single low dose. Both interventions are mechanistically relevant, utilize naturally occurring pathways, and represent new generation therapeutic agents for chronic kidney disease related to glomerular disorders.

7.
Am J Physiol Renal Physiol ; 300(4): F1026-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289056

RESUMO

Podocytes are considered terminally differentiated cells in the mature kidney under normal conditions. In the face of injury, podocytes may proceed along several possible pathways, including dedifferentiation and proliferation, persistent cell cycle arrest, hypertrophy, apoptosis, or necrosis. There is mounting evidence that transdifferentiation into a dysregulated phenotype may also be a potential cell fate. We have previously reported that the transcript of SM22α, an actin-binding protein considered one of the earliest markers of smooth muscle differentiation, is upregulated nearly 70-fold in glomeruli of rats with passive Heymann nephritis (PHN). In contrast, the SM22α transcript is absent in normal adult rat glomeruli. The purpose of this study was to define SM22α's expression during kidney development and its role in glomerular diseases characterized by podocyte injury and proteinuria. During glomerulogenesis and podocyte differentiation, SM22α was expressed in glomeruli. This expression disappeared with glomerular maturation. Along with SM22α induction in PHN, confirmed at both mRNA and protein levels, SM22α was also induced across a broad range of proteinuric diseases, including experimental animal models (puromycin aminonucleoside nephropathy, adriamycin nephropathy, passive nephrotoxic nephritis, and diet-induced obesity) and human diseases (collapsing glomerulopathy, diabetic nephropathy, classic focal segmental glomerulosclerosis, IgA nephropathy, minimal-change disease, membranous nephropathy, and membranoproliferative glomerulonephritis). Crescentic glomerulonephritis was induced in SM22α +/+ and SM22α -/- mice by intraperitoneal injection of sheep anti-rabbit glomeruli antibody 12.5 mg/20 g body wt × 2 doses (n = 12-15/group), with mice euthanized at 7 and 14 days. Compared with SM22α -/- mice, SM22α +/+ mice demonstrated worse disease by histopathological parameters. In addition, there was greater apoptosis (cleaved caspase-3 immunostaining), fewer podocytes (Wilms' tumor-1 immunostaining), and less proliferation (Ki-67 immunostaining) in diseased SM22α +/+ mice. Furthermore, there was decreased activation of Erk1/2 in diseased SM22α +/+ mice. We conclude that the de novo expression of SM22α in glomerular epithelial cells affects the course of crescentic glomerulonephritis.


Assuntos
Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Animais , Apoptose , Western Blotting , Humanos , Imuno-Histoquímica , Nefropatias/patologia , Glomérulos Renais/patologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Podócitos/patologia , Proteinúria/patologia
8.
Am J Physiol Renal Physiol ; 298(5): F1140-51, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20130121

RESUMO

In response to injury, the highly specialized and terminally differentiated glomerular visceral epithelial cell, or podocyte, may undergo several cell fates, including dedifferentiation and proliferation, persistent cell cycle arrest, hypertrophy, apoptosis, or necrosis. Common to these potential outcomes of injury is their ultimate regulation at the level of the cell cycle. There is now a large body of literature confirming the importance of cell cycle regulatory proteins in the cellular response to injury. Although CDK inhibitor p21 levels increase in podocytes following injury, the role of p21 is unclear in focal segmental glomerulosclerosis (FSGS), in part because its function depends heavily on the cytotoxic stimulus and the cellular context. Adriamycin (ADR) is a podocyte toxin used to induce experimental FSGS. The purpose of this study was to define the role of p21 in ADR-induced podocyte injury. BALB/c mice, a strain carrying the recessive ADR susceptibility gene, were backcrossed against c57B6 p21-/- mice to yield a 12th generation BALB/c p21-/- strain. Experimental FSGS was induced by injection of ADR 12 mg/kg × 2 doses (n = 8/group), with mice killed at 1, 2, 8, and 11 wk. Diseased p21-/- mice demonstrated worse albuminuria, more widespread glomerulosclerosis, and higher blood urea nitrogen compared with diseased p21+/+ mice. In diseased p21-/- mice vs. p21+/+ mice, apoptosis [measured by TdT-mediated dUTP nick end labeling (TUNEL) assay] was increased, and podocyte number (measured by WT-1 immunostaining) was decreased. To validate these findings in vitro, we utilized differentiated mouse podocytes, p21-/- and p21+/+, exposed to 0.125 µg/ml ADR. Apoptosis, measured by Hoechst 33342 staining and TUNEL assay, was greater in cultured p21-/- podocytes compared with p21+/+ podocytes. Reconstitution of p21 via retroviral transfection rescued the p21-/- podocytes from apoptosis. We conclude that p21 is prosurvival in the podocyte's response to ADR-induced injury. Ongoing studies are defining the mechanisms of this protective effect as it relates to DNA damage and apoptosis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Doxorrubicina/farmacologia , Glomerulosclerose Segmentar e Focal/patologia , Podócitos/efeitos dos fármacos , Podócitos/patologia , Albuminúria/etiologia , Albuminúria/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Modelos Animais de Doenças , Doxorrubicina/efeitos adversos , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/fisiopatologia , Técnicas In Vitro , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
9.
Am J Physiol Renal Physiol ; 298(3): F702-11, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20007346

RESUMO

Studies have shown that certain cells of the glomerular tuft begin to express proteins considered unique to other cell types upon injury. Little is known about the response of parietal epithelial cells (PEC) to injury. To determine whether PECs change their phenotype upon injury to also express proteins traditionally considered podocyte specific, the following four models of glomerular disease were studied: the transforming growth factor (TGF)-beta1 transgenic mouse model of global glomerulosclerosis, the adriamycin model of focal segmental glomerulosclerosis (FSGS), the anti-glomerular basement membrane (GBM) model of crescentic glomerulonephritis, and the passive Heymann nephritis model of membranous nephropathy. Double immunostaining was performed with antibodies to podocyte-specific proteins (synaptopodin and Wilms' tumor 1) and antibodies to PEC specific proteins (paired box gene 8 and claudin-1). No double staining was detected in normal mice. In contrast, the results showed a statistical increase in the number of cells attached to Bowman basement membrane that were double-positive for both podocyte/PEC proteins in TGF-beta1 transgenic, anti-GBM, and membranous animals. Double-positive cells for both podocyte and PEC proteins were also statistically increased in the glomerular tuft in TGF-beta1 transgenic, anti-GBM, and FSGS mice. These results are consistent with glomerular cells coexpressing podocyte and PEC proteins in experimental glomerular disease, but not under normal circumstances.


Assuntos
Doença Antimembrana Basal Glomerular/metabolismo , Células Epiteliais/metabolismo , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Podócitos/metabolismo , Proteínas/metabolismo , Animais , Doença Antimembrana Basal Glomerular/imunologia , Doença Antimembrana Basal Glomerular/patologia , Anticorpos , Autoanticorpos , Biomarcadores/metabolismo , Proliferação de Células , Doxorrubicina , Células Epiteliais/patologia , Glomerulonefrite/genética , Glomerulonefrite/patologia , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/patologia , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/patologia , Complexo Antigênico da Nefrite de Heymann/imunologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fenótipo , Podócitos/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
10.
Am J Physiol Renal Physiol ; 296(2): F213-29, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18784259

RESUMO

Glomerular diseases remain the leading cause of chronic and end-stage kidney disease. Significant advances in our understanding of human glomerular diseases have been enabled by the development and better characterization of animal models. Diseases of the glomerular epithelial cells (podocytes) account for the majority of proteinuric diseases. Rodents have been extensively used experimentally to better define mechanisms of disease induction and progression, as well as to identify potential targets and therapies. The development of podocyte-specific genetically modified mice has energized the research field to better understand which animal models are appropriate to study acquired podocyte diseases. In this review we discuss inducible experimental models of acquired nondiabetic podocyte diseases in rodents, namely, passive Heymann nephritis, puromycin aminonucleoside nephrosis, adriamycin nephrosis, liopolysaccharide, crescentic glomerulonephritis, and protein overload nephropathy models. Details are given on the model backgrounds, how to induce each model, the interpretations of the data, and the benefits and shortcomings of each. Genetic rodent models of podocyte injury are excluded.


Assuntos
Modelos Animais de Doenças , Nefropatias/patologia , Podócitos/patologia , Animais , Camundongos , Ratos
11.
Nephron Exp Nephrol ; 106(2): e51-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17570940

RESUMO

The glomerular visceral epithelial cell, or podocyte, is a highly specialized and terminally differentiated cell that is fundamental to the integrity of the glomerular filtration barrier and functions to prevent urinary protein leakage and to oppose intracapillary hydrostatic pressure. Common to many human kidney diseases and experimental animal models is a strong association between podocyte injury and the development of progressive kidney disease. Studies have shown that a decline in podocyte number strongly correlates with, and likely underlies, proteinuria and the progression to glomerulosclerosis. Maintenance of podocyte differentiation, essential to its normal structure and function, is challenged in the setting of glomerular injury, with very divergent outcomes dependent upon the inciting injury. In response to injury, podocytes may undergo several cell fates, including proliferation, de-differentiation, hypertrophy, apoptosis, or necrosis. Common to these potential outcomes of renal injury is their ultimate regulation at the level of the cell cycle. Positive regulators (cyclins and cyclin-dependent kinases) and negative regulators (cyclin-dependent kinase inhibitors) coordinate the cell cycle. There is now a large body of literature confirming the importance of cell cycle regulatory proteins in the cellular response to injury. Emerging lessons from mouse knockout experiments highlight that the cell cycle machinery operates differently in distinct cell types. Recent studies focusing on the roles of cell cycle regulatory proteins specifically in podocytes have provided important clues on how these proteins operate to constrain cell proliferation and preserve differentiation in health, and how they modulate the dysregulated phenotype in diseased states. In disease, both a failure to regenerate lost podocytes and an inappropriate proliferative response can have profound consequences for glomerular structure and function. Here, we will review the latest advances in understanding the roles of cell cycle regulatory proteins in diseases of the podocyte.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Ciclinas/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Podócitos/metabolismo , Podócitos/patologia , Animais , Humanos , Modelos Biológicos
12.
Nephron Exp Nephrol ; 102(2): e39-48, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16179806

RESUMO

Globally, glomerular diseases are a leading cause of chronic and end-stage renal disease. In the mature glomerulus, under normal conditions, glomerular cells have a low turnover rate. However, in disease, a variety of pathophysiological stimuli can lead to disturbances in glomerular cell biology, including toxins, immune-mediated stresses, metabolic derangements, drugs, infections, hemodynamic changes, growth factors, and cytokines. Not only does the form of injury govern the histologic and clinical manifestations of disease, but also the nature of the response to injury. This response to injury is largely cell-type specific, and the glomerulus represents a rare microcosm of the larger organism in which one can study the cellular responses of three very distinct cell types: mesangial cells, visceral epithelial cells or podocytes, and endothelial cells. These cells can undergo several cell fates in response to injury, including proliferation, de-differentiation, hypertrophy, senescence, apoptosis, or necrosis. The regulation of these responses occurs at the level of the cell cycle, coordinated by positive regulators, cyclins and cyclin-dependent kinases, and negative regulators, cyclin-dependent kinase inhibitors. There is now a large body of literature confirming the importance of cell cycle regulatory proteins in the glomerular cellular response to injury. The recent advances in cell cycle biology in diseases of the mesangial cell and the podocyte are the focus of this minireview.


Assuntos
Ciclo Celular , Nefropatias/patologia , Glomérulos Renais/patologia , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Mesângio Glomerular/patologia , Mesângio Glomerular/fisiopatologia , Humanos , Hipertrofia , Nefropatias/fisiopatologia , Glomérulos Renais/fisiopatologia , Podócitos/patologia
13.
J Am Soc Nephrol ; 16(9): 2615-25, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15987750

RESUMO

Nephrotic-range proteinuria is due to glomerular diseases characterized by podocyte injury. Glucocorticoids are the standard of care for most forms of nephrotic syndrome. However, the precise mechanisms underlying the beneficial effects of glucocorticoids on podocytes, beyond its general immunosuppressive and anti-inflammatory effects, are still unknown. This study tested the hypothesis that the synthetic glucocorticoid dexamethasone directly reduces podocyte apoptosis. Growth-restricted immortalized mouse podocytes in culture were exposed to puromycin aminonucleoside (PA) to induce apoptosis. Our results showed that dexamethasone significantly reduced PA-induced apoptosis by 2.81-fold. Dexamethasone also rescued podocyte viability when exposed to PA. PA-induced apoptosis was associated with increased p53 expression, which was completely blocked by dexamethasone. Furthermore, the inhibition of p53 by the p53 inhibitor pifithrin-alpha protected against PA-induced apoptosis. Dexamethasone also lowered the increase in the proapoptotic Bax, which was increased by PA, and increased expression of the antiapoptotic Bcl-xL protein. Moreover, the decrease in p53 by dexamethasone was associated with increased Bcl-xL levels. Podocyte apoptosis induced by PA was caspase-3 independent but was associated with the translocation of apoptosis-inducing factor (AIF) from the cytoplasm to nuclei. AIF translocation was inhibited by dexamethasone. These results show that PA-induced podocyte apoptosis is p53 dependent and associated with changes in Bcl-2-related proteins and AIF translocation. The protective effects of dexamethasone on PA-induced apoptosis were associated with decreasing p53, increasing Bcl-xL, and inhibition of AIF translocation. These novel findings provide new insights into the beneficial effects of corticosteroids on podocytes directly, independent of its immunosuppressive effects.


Assuntos
Apoptose/efeitos dos fármacos , Dexametasona/farmacologia , Podócitos/citologia , Podócitos/efeitos dos fármacos , Puromicina Aminonucleosídeo/toxicidade , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Fator de Indução de Apoptose/metabolismo , Células Cultivadas , Humanos , Camundongos , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...