Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210081, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373926

RESUMO

Many natural forests in Southeast Asia are degraded following decades of logging. Restoration of these forests is delayed by ongoing logging and tropical cyclones, but the implications for recovery are largely uncertain. We analysed meteorological, satellite and forest inventory plot data to assess the effect of Typhoon Doksuri, a major tropical cyclone, on the forest landscapes of central Vietnam consisting of natural forests and plantations. We estimated the return period for a cyclone of this intensity to be 40 years. Plantations were almost twice as likely to suffer cyclone damage compared to natural forests. Logged natural forests (9-12 years after cessation of government-licensed logging) were surveyed before and after the storm with 2 years between measurements and remained a small biomass carbon sink (0.1 ± 0.3 Mg C ha-1 yr-1) over this period. The cyclone reduced the carbon sink of recovering natural forests by an average of 0.85 Mg C ha-1 yr-1, less than the carbon loss due to ongoing unlicensed logging. Restoration of forest landscapes in Southeast Asia requires a reduction in unlicensed logging and prevention of further conversion of degraded natural forests to plantations, particularly in landscapes prone to tropical cyclones where natural forests provide a resilient carbon sink. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Tempestades Ciclônicas , Agricultura Florestal , Ecossistema , Vietnã , Florestas , Clima Tropical , Árvores , Conservação dos Recursos Naturais
2.
Geophys Res Lett ; 43(17): 9270-9279, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27840459

RESUMO

Airborne mineral dust is an important component of the Earth system and is increasingly predicted prognostically in weather and climate models. The recent development of data assimilation for remotely sensed aerosol optical depths (AODs) into models offers a new opportunity to better understand the characteristics and sources of model error. Here we examine assimilation increments from Moderate Resolution Imaging Spectroradiometer AODs over northern Africa in the Met Office global forecast model. The model underpredicts (overpredicts) dust in light (strong) winds, consistent with (submesoscale) mesoscale processes lifting dust in reality but being missed by the model. Dust is overpredicted in the Sahara and underpredicted in the Sahel. Using observations of lighting and rain, we show that haboobs (cold pool outflows from moist convection) are an important dust source in reality but are badly handled by the model's convection scheme. The approach shows promise to serve as a useful framework for future model development.

3.
J Geophys Res Atmos ; 118(10): 4385-4400, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25893153

RESUMO

[1] Convective cold pools and the breakdown of nocturnal low-level jets (NLLJs) are key meteorological drivers of dust emission over summertime West Africa, the world's largest dust source. This study is the first to quantify their relative contributions and physical interrelations using objective detection algorithms and an off-line dust emission model applied to convection-permitting simulations from the Met Office Unified Model. The study period covers 25 July to 02 September 2006. All estimates may therefore vary on an interannual basis. The main conclusions are as follows: (a) approximately 40% of the dust emissions are from NLLJs, 40% from cold pools, and 20% from unidentified processes (dry convection, land-sea and mountain circulations); (b) more than half of the cold-pool emissions are linked to a newly identified mechanism where aged cold pools form a jet above the nocturnal stable layer; (c) 50% of the dust emissions occur from 1500 to 0200 LT with a minimum around sunrise and after midday, and 60% of the morning-to-noon emissions occur under clear skies, but only 10% of the afternoon-to-nighttime emissions, suggesting large biases in satellite retrievals; (d) considering precipitation and soil moisture effects, cold-pool emissions are reduced by 15%; and (e) models with parameterized convection show substantially less cold-pool emissions but have larger NLLJ contributions. The results are much more sensitive to whether convection is parameterized or explicit than to the choice of the land-surface characterization, which generally is a large source of uncertainty. This study demonstrates the need of realistically representing moist convection and stable nighttime conditions for dust modeling. Citation: Heinold, B., P. Knippertz, J. H. Marsham, S. Fiedler, N. S. Dixon, K. Schepanski, B. Laurent, and I. Tegen (2013), The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations, J. Geophys. Res. Atmos., 118, 4385-4400, doi:10.1002/jgrd.50402.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...