Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 22: 1191-1199, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33312755

RESUMO

Facioscapulohumeral dystrophy (FSHD) is characterized by a loss of repressive epigenetic marks leading to the aberrant expression of the DUX4 transcription factor. In muscle, DUX4 acts as a poison protein though the induction of multiple downstream genes. So far, there is no therapeutic solution for FSHD. Because DUX4 is a transcription factor, we developed an original therapeutic approach, based on a DNA decoy trapping the DUX4 protein, preventing its binding to genomic DNA and thereby blocking the aberrant activation of DUX4's transcriptional network. In vitro, transfection of a DUX4 decoy into FSHD myotubes reduced the expression of the DUX4 network genes. In vivo, both double-stand DNA DUX4 decoys and adeno-associated viruses (AAVs) carrying DUX4 binding sites reduced transcriptional activation of genes downstream of DUX4 in a DUX4-expressing mouse model. Our study demonstrates, both in vitro and in vivo, the feasibility of the decoy strategy and opens new avenues of research.

2.
Curr Biol ; 30(5): 909-915.e4, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155415

RESUMO

Germination sensu stricto in Arabidopsis involves seed-coat and endosperm rupture by the emerging seedling root. Subsequently, the cotyledons emerge rapidly from the extra-embryonic tissues of the seed, allowing autotrophic seedling establishment [1, 2]. Seedling survival depends upon the presence of an intact seedling cuticle that prevents dehydration, which has hitherto been assumed to form the interface between the newly germinated seedling and its environment [3-5]. Here, we show that in Arabidopsis, this is not the case. The primary interface between the emerging seedling and its environment is formed by an extra-cuticular endosperm-derived glycoprotein-rich structure called the sheath, which is maintained as a continuous layer at seedling surfaces during germination and becomes fragmented as cotyledons expand. Mutants lacking an endosperm-specific cysteine-rich peptide (KERBEROS [KRS]) show a complete loss of sheath production [6]. Although krs mutants have no defects in germination sensu stricto, they show delayed cotyledon emergence, a defect not observed in seedlings with defects in cuticle biosynthesis. Biophysical analyses reveal that the surfaces of wild-type cotyledons show minimal adhesion to silica beads in an aqueous environment at cotyledon emergence but that adhesion increases as cotyledons expand. In contrast, krs mutant cotyledons show enhanced adhesion at germination. Mutants with defects in cuticle biosynthesis, but no sheath defects, show a similar adhesion profile to wild-type seedlings at germination. We propose that the sheath reduces the adhesiveness of the cotyledon surface under the humid conditions necessary for seed germination and thus promotes seed-coat shedding and rapid seedling establishment.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cotilédone/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Germinação
3.
PLoS Genet ; 15(4): e1007847, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998684

RESUMO

The embryonic cuticle is necessary for normal seed development and seedling establishment in Arabidopsis. Although mutants with defective embryonic cuticles have been identified, neither the deposition of cuticle material, nor its regulation, has been described during embryogenesis. Here we use electron microscopy, cuticle staining and permeability assays to show that cuticle deposition initiates de novo in patches on globular embryos. By combining these techniques with genetics and gene expression analysis, we show that successful patch coalescence to form a continuous cuticle requires a signalling involving the endosperm-specific subtilisin protease ALE1 and the receptor kinases GSO1 and GSO2, which are expressed in the developing embryonic epidermis. Transcriptome analysis shows that this pathway regulates stress-related gene expression in seeds. Consistent with these findings we show genetically, and through activity analysis, that the stress-associated MPK6 protein acts downstream of GSO1 and GSO2 in the developing embryo. We propose that a stress-related signalling pathway has been hijacked in some angiosperm seeds through the recruitment of endosperm-specific components. Our work reveals the presence of an inter-compartmental dialogue between the endosperm and embryo that ensures the formation of an intact and functional cuticle around the developing embryo through an "auto-immune" type interaction.


Assuntos
Arabidopsis/embriologia , Arabidopsis/fisiologia , Desenvolvimento Embrionário , Desenvolvimento Vegetal , Transdução de Sinais , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Embrionário/genética , Endosperma/embriologia , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenótipo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas , Sementes/genética , Estresse Fisiológico/genética , Transgenes
4.
Curr Opin Plant Biol ; 46: 8-17, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29981931

RESUMO

Plant cells are enclosed in cell walls that weld them together, meaning that cells rarely change neighbours. Nonetheless, invasive growth events play critical roles in plant development and are often key hubs for the integration of environmental and/or developmental signalling. Here we review cellular processes involved in three such events: lateral root emergence, pollen tube growth through stigma and style tissues, and embryo expansion through the endosperm (Figures 1-3). We consider processes such as regulation of water fluxes and cell turgor (driving growth), cell wall modifications (e.g. cell separation) and cell death (for creating space) within these three contexts with the aim of identifying key mechanisms implicated in providing a chemical and biophysical environments permitting invasive growth events.


Assuntos
Parede Celular/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Morte Celular , Endosperma/citologia , Endosperma/crescimento & desenvolvimento , Células Vegetais/fisiologia , Raízes de Plantas/citologia , Tubo Polínico/citologia
5.
Int J Mol Sci ; 19(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751519

RESUMO

Facioscapulohumeral dystrophy (FSHD) is characterized by the contraction of the D4Z4 array located in the sub-telomeric region of the chromosome 4, leading to the aberrant expression of the DUX4 transcription factor and the mis-regulation of hundreds of genes. Several therapeutic strategies have been proposed among which the possibility to target the polyadenylation signal to silence the causative gene of the disease. Indeed, defects in mRNA polyadenylation leads to an alteration of the transcription termination, a disruption of mRNA transport from the nucleus to the cytoplasm decreasing the mRNA stability and translation efficiency. This review discusses the polyadenylation mechanisms, why alternative polyadenylation impacts gene expression, and how targeting polyadenylation signal may be a potential therapeutic approach for FSHD.


Assuntos
RNA Mensageiro/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Poliadenilação/genética , Poliadenilação/fisiologia
6.
Hum Mol Genet ; 25(8): 1468-78, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26787513

RESUMO

Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.


Assuntos
Proteínas de Homeodomínio/genética , Morfolinos/síntese química , Distrofia Muscular Facioescapuloumeral/terapia , Oligonucleotídeos Antissenso/síntese química , Precursores de RNA/antagonistas & inibidores , Regiões 3' não Traduzidas/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Poliadenilação/efeitos dos fármacos , Precursores de RNA/química , Transdução de Sinais
7.
BMC Plant Biol ; 13: 209, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24330651

RESUMO

BACKGROUND: Certain temperate species require prolonged exposure to low temperature to initiate transition from vegetative growth to flowering, a process known as vernalization. In wheat, winter cultivars require vernalization to initiate flowering, making vernalization requirement a trait of key importance in wheat agronomy. The genetic bases of vernalization response have been largely studied in wheat, leading to the characterization of a regulation pathway that involves the key gene VERNALIZATION1 (VRN1). While previous studies in wheat and barley have revealed the functional role of histone modification in setting VRN1 expression, other mechanisms might also be involved. Here, we were interested in determining whether the cold-induced expression of the wheat VRN-A1 gene is associated with a change in DNA methylation. RESULTS: We provide the first DNA methylation analysis of the VRN-A1 gene, and describe the existence of methylation at CG but also at non CG sites. While CG sites show a bell-shape profile typical of gene-body methylation, non CG methylation is restricted to the large (8.5 kb) intron 1, in a region harboring fragments of transposable elements (TEs). Interestingly, cold induces a site-specific hypermethylation at these non CG sites. This increase in DNA methylation is transmitted through mitosis, and is reset to its original level after sexual reproduction. CONCLUSIONS: These results demonstrate that VRN-A1 has a particular DNA methylation pattern, exhibiting rapid shift within the life cycle of a winter wheat plant following exposure to particular environmental conditions. The finding that this shift occurs at non CG sites in a TE-rich region opens interesting questions onto the possible consequences of this type of methylation in gene expression.


Assuntos
Temperatura Baixa , Metilação de DNA/genética , Flores/fisiologia , Loci Gênicos/genética , Poliploidia , Triticum/genética , Triticum/fisiologia , Alelos , Enzimas de Restrição do DNA/metabolismo , Elementos de DNA Transponíveis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Íntrons/genética , Mitose/genética , Folhas de Planta/genética , Estações do Ano , Transcrição Gênica , Triticum/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...