Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0275363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36383571

RESUMO

ddPCR is becoming one of the most widely used tool in the field of eDNA-based aquatic monitoring. Although emulsion PCR used in ddPCR confers a partial mitigation to inhibition due to the high number of reactions for a single sample (between 10K and 20K), it is not impervious to it. Our results showed that inhibition impacts the amplitude of fluorescence in positive droplets with a different intensity among rivers. This signal fluctuation could jeopardize the use of a shared threshold among samples from different origin, and thus the accurate assignment of the positive droplets which is particularly important for low concentration samples such as eDNA ones: amplification events are scarce, thus their objective discrimination as positive is crucial. Another issue, related to target low concentration, is the artifactual generation of high fluorescence droplets ('stars'). Indeed, these could be counted as positive with a single threshold solution, which in turn could produce false positive and incorrect target concentration assessments. Approximating the positive and negative droplets distribution as normal, we proposed here a double threshold method accounting for both high fluorescence droplets ('stars') and PCR inhibition impact in delineating positive droplets clouds. In the context of low concentration template recovered from environmental samples, the application of this method of double threshold establishment could allow for a consistent sorting of the positive and negative droplets throughout ddPCR data generated from samples with varying levels of inhibitor contents. Due to low concentrations template and inhibition effects, Quantasoft software produced an important number of false negatives and positive comparatively to the double threshold method developed here. This case study allowed the detection of the invasive crayfish P. leniusculus in 32 out of 34 sampled sites from two main rivers (Alzette and Sûre) and five of their tributaries (Eisch, Attert, Mamer, Wiltz and Clerve).


Assuntos
Astacoidea , DNA Ambiental , Animais , Astacoidea/genética , Luxemburgo , Análise de Dados , DNA/genética , Reação em Cadeia da Polimerase
2.
Sci Rep ; 12(1): 6553, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449180

RESUMO

LAMP assays are becoming increasingly popular in the field of invasive species detection but are still underused in eDNA-based monitoring. Here, we propose a LAMP assay designed to detect the North American crayfish species Pacifastacus leniusculus in water samples from streams. The presence of P. leniusculus was detected through this new LAMP assay in all but one of the nine sites sampled. No correlation was found between ddPCR absolute concentration measurements and the number of LAMP-positive technical replicates. However, we showed that using dependent technical replicates could significantly enhance the detection sensitivity of the LAMP assay. Applied to other assays, it could improve sensitivity and thus allow for a more efficient use of eDNA-based LAMP assays for invasive species detection in aquatic ecosystems.


Assuntos
Astacoidea , DNA Ambiental , Animais , Astacoidea/genética , Ecossistema , Espécies Introduzidas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Rios
3.
Mycologia ; 107(3): 607-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25661715

RESUMO

Glyphium encompasses species with erect, carbonaceous ligulate to dolabrate ascomata that are strongly laterally compressed and dehisce along a longitudinal slit. The five currently recognized members of the genus are separated primarily by whether the ascospores disassociate into part-spores within the ascus. Glyphium has traditionally been placed in Mytilinidiaceae (Mytilinidiales, Pleosporomycetidae, Dothideomycetes). The present study, based on freshly collected material of G. elatum and G. grisonense, was initiated to determine the phylogenetic placement of Glyphium. Phylogenies inferred from the analysis of sequences of six gene regions (nuLSU, nuSSU, mtSSU, TEF1, RPB1, RPB2) derived from six accessions indicate that Glyphium belongs to Patellariales (Pleosporomycetidae, Dothideomycetes). Our phylogenies also support the phylogenetic relationship of Patellaria and Hysteropatella within this order. The nomenclatural history of Glyphium is summarized and a key to species is provided.


Assuntos
Ascomicetos/classificação , Filogenia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , DNA Ribossômico/genética , Proteínas Fúngicas/genética , Dados de Sequência Molecular , RNA Polimerase II/genética , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...