Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 7: 245, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973686

RESUMO

One key role of the essential polyamine spermidine in eukaryotes is to provide the 4-aminobutyl moiety group destined to the post-translational modification of a lysine in the highly conserved translation factor eIF5A. This modification is catalyzed by two sequential enzymatic steps leading to the activation of eIF5A by the conversion of one conserved lysine to the unusual amino acid hypusine. The active translation factor facilitates the sequence-specific translation of polyproline sequences that otherwise cause ribosome stalling. In spite of the well-characterized involvement of active eIF5A in the translation of proline repeat-rich proteins, its biological role has been recently elucidated only in mammals, and it is poorly described at the functional level in plants. Here we describe the alterations in plant growth and development caused by RNAi-mediated conditional genetic inactivation of the hypusination pathway in Arabidopsis thaliana by knocking-down the enzyme deoxyhypusine synthase. We have uncovered that spermidine-mediated activation of eIF5A by hypusination is involved in several aspects of plant biology such as the control of flowering time, the aerial and root architecture, and root hair growth. In addition this pathway is required for adaptation to challenging growth conditions such as high salt and high glucose medium and to elevated concentrations of the plant hormone ABA. We have also performed a bioinformatic analysis of polyproline-rich containing proteins as putative eIF5A targets to uncover their organization in clusters of protein networks to find molecular culprits for the disclosed phenotypes. This study represents a first attempt to provide a holistic view of the biological relevance of the spermidine-dependent hypusination pathway for plant growth and development.

2.
PLoS One ; 7(10): e46907, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056524

RESUMO

Plant aminopropyltransferases consist of a group of enzymes that transfer aminopropyl groups derived from decarboxylated S-adenosyl-methionine (dcAdoMet or dcSAM) to propylamine acceptors to produce polyamines, ubiquitous metabolites with positive charge at physiological pH. Spermidine synthase (SPDS) uses putrescine as amino acceptor to form spermidine, whereas spermine synthase (SPMS) and thermospermine synthase (TSPMS) use spermidine as acceptor to synthesize the isomers spermine and thermospermine respectively. In previous work it was shown that both SPDS1 and SPDS2 can physically interact with SPMS although no data concerning the subcellular localization was reported. Here we study the subcellular localization of these enzymes and their protein dimer complexes with gateway-based Bimolecular Fluorescence Complementation (BiFC) binary vectors. In addition, we have characterized the molecular weight of the enzyme complexes by gel filtration chromatography with in vitro assembled recombinant enzymes and with endogenous plant protein extracts. Our data suggest that aminopropyltransferases display a dual subcellular localization both in the cytosol and nuclear enriched fractions, and they assemble preferably as dimers. The BiFC transient expression data suggest that aminopropyltransferase heterodimer complexes take place preferentially inside the nucleus.


Assuntos
Arabidopsis/citologia , Arabidopsis/enzimologia , Núcleo Celular/metabolismo , Poliaminas/metabolismo , Espermidina Sintase/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/metabolismo , Núcleo Celular/enzimologia , Citosol/enzimologia , Peso Molecular , Espermidina Sintase/química
3.
J Plant Physiol ; 167(14): 1188-96, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20570010

RESUMO

Gibberellin 20-oxidases, enzymes of gibberellin (GA) biosynthesis, play an important role in (GA) homeostasis. To investigate the regulation of tomato SlGA20ox1 expression, a genomic clone was isolated, its promoter transcriptionally fused to the GUS reporter gene, and the construct used to transform Arabidopsis. Expression was found in diverse vegetative (leaves and roots) and reproductive (flowers) organs. GUS staining was also localized in the columella of secondary roots. GA negative feed-back regulation of SlGA20ox1:GUS was shown to be active both in tomato and in transformed Arabidopsis. Auxin (indol-3-acetic acid, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid), triiodobenzoic acid (an inhibitor of auxin transport) and benzyladenine (a cytokinin) treatment induced SlGA20ox1:GUS expression associated with increased auxin content and/or signaling, detected using DR5:GUS expression as a marker. Interestingly, SlGA20ox:GUS expression was induced by auxin and root excision in the hypocotyl, an organ not showing GUS staining in control seedlings. In etiolated seedlings, SlGA20ox1:GUS expression occurred in the elongating hypocotyl region of etiolated seedlings and was down-regulated upon transfer to light associated with decrease of growth rate elongation. Our results show that feed-back, auxin and light regulation of SlGA20ox1 expression depends on DNA elements contained within the first 834bp of the 5' upstream promoter region. Putative DNA regulatory sequences involved in negative feed-back regulation and auxin response were identified in that promoter.


Assuntos
Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/enzimologia , Arabidopsis/genética , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Exp Bot ; 57(9): 2037-47, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16687436

RESUMO

Based on its compact habit, Micro-Tom, a dwarf cultivar of tomato (Solanum lycopersicum L.), has been proposed as a preferred variety to carry out molecular research in tomato. This cultivar, however, is poorly characterized. It is shown here that Micro-Tom has mutations in the SELF-PRUNING (SP) and DWARF (D) genes. In addition to this, it is also shown that Micro-Tom harbours at least two independently segregating resistance loci to the plant pathogen Cladosporium fulvum. The presence of the self-pruning mutation in Micro-Tom, that generates a determinate phenotype, was confirmed by crossing and sequence analysis. It was also found that Micro-Tom has a mutation in the DWARF gene (d) that leads to mis-splicing and production of at least two shorter mRNAs. The d mutation is predicted to generate truncated DWARF protein. The d sequence defect co-segregates with dark-green and rugose leaves, characteristics of brassinosteroid biosynthesis mutants. Micro-Tom also carries at least another mutation producing internode length reduction that affects plant height but not active gibberellin (GA) levels, which were similar in dwarf and tall Micro-TomxSeverianin segregants. GAs and brassinosteroids act synergistically in Micro-Tom, and the response to GA depends on brassinosteroids because the elongation of internodes was at least six times higher when GA(3) was applied simultaneously with brassinolide. A novel variety, Micro-0 that is fully susceptible to C. fulvum and almost as dwarf as Micro-Tom, has been generated from the cross of Cf0xMicro-Tom. This line represents a valuable resource for future analysis of Cf resistance genes through breeding or transformation.


Assuntos
Cladosporium/fisiologia , Giberelinas/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Esteroides/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Giberelinas/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Dados de Sequência Molecular , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Splicing de RNA , Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...