Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36769922

RESUMO

In this work, GaN and InN nanosheets with dodecylamine (DDA) as surfactant have been studied as nanofluids to be used in solar plants. The interactions between the sheets and the surfactants have been performed using density functional theory. The most favorable interaction site on the surface corresponds to the metallic atom of the sheet with the N atom of the surfactant. In this interaction, the pair of electrons of N from the surfactant with the metal atom of the sheet play a stabilizing role, which is corroborated by electron localization function (ELF), quantum theory of atoms in molecules (QTAIM), and density of states (DOS) analysis. The isobaric specific heat values for the most favorable interaction were obtained in the presence of water, ethylene glycol, and diphenyl oxide as solvents for the first time. The highest value corresponds to systems with diphenyl oxide, being the values obtained of 0.644 J/gK and 0.363 J/gK for GaN-DDA and InN-DDA systems, respectively. These results open the possibilities of using GaN-DDA and InN-DDA systems in solar energy applications.

2.
Nanomaterials (Basel) ; 10(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443607

RESUMO

Transition metal dichalcogenides (TMCs) exhibit unique properties that make them of interest for catalysis, sensing or energy storage applications. However, few studies have been performed into nanofluids based on TMCs for heat transfer applications. In this study, nanofluids based on 2D-WS2 are prepared by liquid phase exfoliation to analyze their potential usage in concentrating solar power plants. Periodic-Density Functional Theory (DFT) calculations were performed to rationalize the success of the exfoliation process. The hydrogen bond interaction between the hydroxyl group from PEG, which acts as a surfactant, and the S atoms of the WS2 surface stabilizes the nanosheets in the fluid. Electron localization function (ELF) analysis is indicative of the stability of the S-H interaction from WS2 with the molecules of surfactant due to the tendency to interact through weak intermolecular forces of van der Waals solids. Moreover, improvements in thermal properties were also found. Isobaric specific heat increased by up to 10% and thermal conductivity improved by up to 37.3%. The high stability of the nanofluids and the thermal improvements were associated with the high surface area of WS2 nanosheets. These results suggest that these nanofluids could be a promising heat transfer fluid in concentrating solar power plants.

3.
ACS Appl Mater Interfaces ; 12(5): 5793-5804, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31942792

RESUMO

Nano-colloidal suspensions of nanomaterials in a fluid, nanofluids, are appealing because of their interesting properties related to heat transfer processes. While nanomaterials based on transition metal chalcogenides (TMCs) have been widely studied in catalysis, sensing, and energy storage applications, there are few studies of nanofluids based on TMCs for heat transfer applications. In this study, the preparation and analysis of nanofluids based on 2D-WS2 in a typical heat transfer fluid (HTF) used in concentrating solar power (CSP) plants are reported. Nanofluids prepared using an exfoliation process exhibited well-defined nanosheets and were highly stable. The nanofluids were characterized in terms of properties related to their application in CSP. The presence of WS2 nanosheets did not modify significantly the surface tension, the viscosity, or the isobaric specific heat, but the thermal conductivity was improved by up to 30%. The Ur factor, which characterizes the thermal efficiency of the fluid in the solar collector, shows an enhancement of up to 22% in the nanofluid, demonstrating great promise for CSP applications. The Reynolds number and friction factor of the fluid were not significantly modified by the addition of the nanomaterial to the HTF, which is also positive for practical applications in CSP plants. Ab initio molecular dynamics simulations of the nanoparticle/fluid interface showed an irreversible dissociative adsorption of diphenyl oxide molecules on the WS2 edge, with very low kinetic barrier. The resulting "decoration" of the WS2 edge dramatically affects the nature of the interface interactions and is therefore expected to affect significantly the rheological and transport properties of the nanofluids.

4.
Phys Chem Chem Phys ; 20(4): 2421-2430, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29308800

RESUMO

A molecular dynamics study based on gold nanofluids performed with and without the presence of tetraoctylammonium halide as a surfactant in a base fluid is presented. The base fluid consisting of a mixture of biphenyl and diphenyl oxide is used in concentrating solar power (CSP) plants. The radial distribution functions (RDFs) and spatial distribution functions (SDFs) were analysed with the temperature. Theoretical results indicate that the surfactant acts as a kind of net around the nanoparticle that plays an active role in enhancing the thermal properties of the gold nanofluid system. A greater lability of the base fluid-surfactant interactions than the base fluid-gold nanoparticle interactions is observed. At lower temperatures, there is an inner layer around the gold nanoparticle with two surfactant molecules close to the metal. At a higher temperature a ratio of gold nanoparticles : diphenyl oxide molecules of 1 : 4 is maintained in the inner layer for the systems with and without the presence of a surfactant. At the highest temperatures, the presence of the surfactant in a second shell impedes the approximation of the fifth diphenyl oxide molecule. Thus, the surfactant affects the macroscopic properties of the gold nanofluid system at the molecular level.

5.
Chemphyschem ; 18(4): 346-356, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27958673

RESUMO

This study shows an analysis of the stability of nanofluids based on a eutectic mixture of diphenyl oxide and biphenyl, which is used as a heat transfer fluid (HTF) in concentrating solar energy, and NiO nanoparticles. Two surfactants are used to analyse the stability of the nanofluids: benzalkonium chloride (BAC) and 1-octadecanethiol (ODT). From an experimental perspective, the stability is analysed by means of UV/Vis spectroscopy, particle size measurements through the dynamic light-scattering technique, and ζ-potential measurements. The results show that the stability of the nanofluids improves with the use of BAC. DFT calculations are performed to understand the role played by the surfactants. The interaction of the surfactants with both the fluid and the NiO (100) surface is studied. Quantum theory of atoms in molecules (QTAIM) analysis shows that hydrogen bridge interactions favour the stability of the fluid-surfactant mixture. The more stabilising NiO-surfactant interaction involves the Ni-H interaction of the -SH and -CH3 groups of ODT and BAC. Also, nanofluids with BAC are favoured over those with ODT, which is in agreement with experimental results. The structural and electronic effects of incorporating the surfactant onto the NiO (100) surface are shown by using electron localisation function analysis, the non-covalent interaction index and projected density of states.

6.
J Chem Phys ; 143(4): 044502, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26233140

RESUMO

A theoretical study on the hydration phenomena of three representative Phthalocyanines (Pcs): the metal-free, H2Pc, and the metal-containing, Cu-phthalocyanine, CuPc, and its soluble sulphonated derivative, [CuPc(SO3)4](4-), is presented. Structural and dynamic properties of molecular dynamics trajectories of these Pcs in solution were evaluated. The hydration shells of the Pcs were defined by means of spheroids adapted to the solute shape. Structural analysis of the axial region compared to the peripheral region indicates that there are no significant changes among the different macrocycles, but that of [CuPc(SO3)4](4-), where the polyoxoanion presence induces a typically hydrophilic hydration structure. The analyzed water dynamic properties cover mean residence times, translational and orientational diffusion coefficients, and hydrogen bond network. These properties allow a thorough discussion about the simultaneous existence of hydrophobic and hydrophilic hydration in these macrocycles, and indicate the trend of water structure to well define shells in the environment of hydrophobic solutes. The comparison between the structural and dynamical analysis of the hydration of the amphipathic [CuPc(SO3)4](4-) and the non-soluble Cu-Pc shows a very weak coupling among the hydrophilic and hydrophobic fragments of the macrocycle. Quantitative results are employed to revisit the iceberg model proposed by Frank and Evans, leading to conclude that structure and dynamics support a non-strict interpretation of the iceberg view, although the qualitative trends pointed out by the model are supported.


Assuntos
Ligação de Hidrogênio , Indóis/química , Termodinâmica , Água/química , Interações Hidrofóbicas e Hidrofílicas , Isoindóis , Simulação de Dinâmica Molecular , Soluções/química
7.
Phys Chem Chem Phys ; 17(37): 23886-96, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26308377

RESUMO

This paper presents the synthesis of organic-inorganic hybrid perovskite CH3NH3Pb1-xCdxI3. The effect of incorporating Cd(2+) or Pb(2+) on the stability of the perovskite structure was analysed from a theoretical and experimental viewpoint. The XRD results showed that the tetragonal perovskite structure was formed for x values of up to 0.5, which seems to indicate that the presence of a considerable amount of Pb(2+) is necessary to stabilise the structure. In turn, UV-Vis spectroscopy showed how the presence of Cd(2+) led to a reduction in the optical band gap of the perovskite structure of up to 9% for CH3NH3Pb0.5Cd0.5I3 with regard to the MAPbI3 structure. Moreover, periodic-DFT calculations were performed to understand the effect of the increased concentration of Cd on the structural and electronic properties of MAPbI3 perovskites. The analysis of both the ELF and the non-covalent interaction (NCI) index show the important role played by the Pb(2+) ions in stabilizing this kind of hybrid perovskite structures. Finally, the DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy. The theoretical band gap values decreased as the concentration of Cd increased.

8.
J Chem Phys ; 134(2): 024503, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21241116

RESUMO

A quantum and statistical study on the effects of the ions Cu(2+) and SO(3)(-) in the solvent structure around the metal-free phthalocyanine (H(2)Pc) is presented. We developed an ab initio interaction potential for the system CuPc-H(2)O based on quantum chemical calculations and studied its transferability to the H(2)Pc-H(2)O and [CuPc(SO(3))(4)](4-)-H(2)O interactions. The use of the molecular dynamics technique allows the determination of energetic and structural properties of CuPc, H(2)Pc, and [CuPc(SO(3))(4)](4-) in water and the understanding of the keys for the different behaviors of the three phthalocyanine (Pc) derivatives in water. The inclusion of the Cu(2+) cation in the Pc structure reinforces the appearance of two axial water molecules and second-shell water molecules in the solvent structure, whereas the presence of SO(3)(-) anions implies a well defined hydration shell of about eight water molecules around them making the macrocycle soluble in water. Debye-Waller factors for axial water molecules have been obtained in order to examine the potential sensitivity of the extended x-ray absorption fine structure technique to detect the axial water molecules.


Assuntos
Cobre/química , Indóis/química , Simulação de Dinâmica Molecular , Ácidos Sulfônicos/química , Água/química , Isoindóis , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...