Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animal ; 13(10): 2140-2145, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30837022

RESUMO

Seasonal reproduction patterns are typically observed in small ruminants and are a major limitation for production efficiency in most meat- and dairy-type production systems. Indeed, selection for reduced seasonality could be an appealing strategy for the small ruminant industry worldwide, although its genetic background has been poorly analyzed. One of the main limitations relied on the availability of appropriate analytical tools to cope with the circular (i.e. year-round) pattern of lambing and kidding data. The recent development of a heteroskedastic circular mixed model provided the statistical tool to go deeply into the knowledge of seasonality in small ruminants. In this study, 26 005 lambing distribution records from 4764 Ripollesa ewes collected in 20 purebred flocks were analyzed. The model accounted for systematic (lambing interval and ewe age), permanent environmental (flock-year-season and ewe) and additive genetic sources of variation influencing both mean and dispersion pattern (i.e. heteroskedasticity). Systematic effects suggested that first-lambing ewes and short lambing intervals delayed lambing date (~30 days) and increased dispersion of the lambing period. Nevertheless, this was partially compensated by ewe age, given that youngest females tended to concentrate the lambing peak. Flock-year-season, permanent ewe and additive genetic sources of variation reached moderate variance components for direct (and residual) effects on lambing distribution, they being 0.119 (0.156), 0.092 (0.132) and 0.195 (0.170) radians2, respectively. Moreover, all 95% credibility intervals were placed far from the null estimate. Covariances between direct and residual effects where high and positive for additive genetic (posterior mean, 0.814) and permanent ewe effects (posterior mean, 0.917), whereas it was not relevant for flock-year-season. Selection for direct additive genetic effects should be able to advance or delay the lambing peak, whereas selection applied on residual additive genetic effects should increase or reduce seasonality (i.e. concentrate or flatten the lambing peak). Moreover, the positive and relevant genetic covariance between direct and residual effects also suggested correlated genetic responses. As example, genetic selection for earlier lambing peaks must also reduce seasonality, whereas selection for narrower lambing seasons may originate a delay in the lambing peak. These results must be viewed as the first attempt to analyze systematic, environmental and genetic sources of variation of lambing distribution within the circular paradigm, they providing a reliable characterization of these effects within the context of an heteroskedastic model.


Assuntos
Modelos Estatísticos , Reprodução , Ovinos/genética , Animais , Cruzamento , Meio Ambiente , Feminino , Fertilidade , Tamanho da Ninhada de Vivíparos , Gravidez , Estações do Ano , Ovinos/fisiologia , Distribuições Estatísticas
2.
Animal ; 13(10): 2133-2139, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30837023

RESUMO

Circular data originates in a wide range of scientific fields and can be analyzed on the basis of directional statistics and special distributions wrapped around the circumference. However, both propensity to transform non-linear to linear data and complexity of directional statistics limited the generalization of the circular paradigm in the animal breeding framework, among others. Here, we generalized a circular mixed (CM) model within the context of Bayesian inference. Three different parametrizations with different hierarchical structures were developed on basis of the von Mises distribution; moreover, both goodness of fit and predictive ability from each parametrization were compared through the analyses of 110 116 lambing distribution records collected from Ripollesa sheep herds between 1976 and 2017. The naive circular (NC) model only accounted for population mean and homogeneous circular variance, and reached the lowest goodness-of-fit and predictive ability. The CM model assumed a hierarchical structure for the population mean by accounting for systematic (ewe age and lambing interval) and permanent environmental sources of variation (flock-year-season and ewe). This improved goodness of fit by reducing both the deviance information criterion (DIC; -2520 units) and the mean square error (MSE; -12.4%) between simulated and predicted lambing data when compared against the NC model. Finally, the last parametrization expanded CM model by also assuming a hierarchical structure with systematic and permanent environmental factors for the variance parameter of the von Mises distribution (i.e. circular canalization (CC) model). This last model reached the best goodness of fit to lambing distribution data with a DIC estimate 5425 units lower than the one for NC model (MSE reduced 13.2%). The same pattern revealed when models were compared in terms of predictive ability. The superiority revealed by CC model emphasized the relevance of heteroskedasticity for the analysis of lambing distribution in the Ripollesa breed, and suggested potential applications for the sheep industry, even genetic selection for canalization. The development of CM models on the basis of the von Mises distribution has allowed to integrate flexible hierarchical structures accounting for different sources of variation and affecting both mean and dispersion terms. This must be viewed as a useful statistical tool with multiple applications in a wide range of research fields, as well as the livestock industry. The next mandatory step should be the inclusion of genetic terms in the hierarchical structure of the models in order to evaluate their potential contribution to current selection programs.


Assuntos
Modelos Estatísticos , Reprodução , Ovinos/fisiologia , Fatores Etários , Animais , Teorema de Bayes , Cruzamento , Meio Ambiente , Feminino , Tamanho da Ninhada de Vivíparos , Gravidez , Estações do Ano , Distribuições Estatísticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...