Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 46: 101851, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450543

RESUMO

Cognitive decline is among the most feared aspects of ageing. We have generated induced pluripotent stem cells (iPSCs) from 24 people from the Lothian Birth Cohort 1936, whose cognitive ability was tested in childhood and in older age. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating oriP/EBNA1 backbone plasmids expressing six iPSC reprogramming factors (OCT3/4 (POU5F1), SOX2, KLF4, L-Myc, shp53, Lin28, SV40LT). All lines demonstrated STR matched karyotype and pluripotency was validated by multiple methods. These iPSC lines are a valuable resource to study molecular mechanisms underlying individual differences in cognitive ageing and resilience to age-related neurodegenerative diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Reprogramação Celular , Cariótipo , Leucócitos Mononucleares , Plasmídeos
2.
Exp Neurol ; 323: 113095, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712124

RESUMO

Currently, molecular, electrophysiological and structural studies delineate several neural subtypes in the hippocampus. However, the precise developmental mechanisms that lead to this diversity are still unknown. Here we show that alterations in a concrete hippocampal neuronal subpopulation during development specifically affect hippocampal-dependent spatial memory. We observed that the genetic deletion of the transcription factor Helios in mice, which is specifically expressed in developing hippocampal calbindin-positive CA1 pyramidal neurons (CB-CA1-PNs), induces adult alterations affecting spatial memory. In the same mice, CA3-CA1 synaptic plasticity and spine density and morphology in adult CB-CA1-PNs were severely compromised. RNAseq experiments in developing hippocampus identified an aberrant increase on the Visinin-like protein 1 (VSNL1) expression in the hippocampi devoid of Helios. This aberrant increase on VSNL1 levels was localized in the CB-CA1-PNs. Normalization of VSNL1 levels in CB-CA1-PNs devoid of Helios rescued their spine loss in vitro. Our study identifies a novel and specific developmental molecular pathway involved in the maturation and function of a CA1 pyramidal neuronal subtype.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurocalcina/metabolismo , Neurogênese/fisiologia , Células Piramidais/fisiologia , Memória Espacial/fisiologia , Fatores de Transcrição/metabolismo , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/citologia
3.
Mol Ther Methods Clin Dev ; 12: 134-144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30623002

RESUMO

Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdc scid Il2rd tm1Wjl /SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients.

4.
J Comp Neurol ; 526(4): 721-741, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205371

RESUMO

The mammalian ventricular-subventricular zone (V-SVZ) presents the highest neurogenic potential in the brain of the adult individual. In rodents, it is mainly composed of chains of neuroblasts. In humans, it is organized in layers where neuroblasts do not form chains. The aim of this study is to describe the cytoarchitecture of canine V-SVZ (cV-SVZ), to assess its neurogenic potential, and to compare our results with those previously described in other species. We have studied by histology, immunohistochemistry (IHC), electron microscopy and neurosphere assay the morphology, cytoarchitecture and neurogenic potential of cV-SVZ. Age groups of animals were performed. Histological and ultrastructural studies indicated that the cV-SVZ is organized in layers as in humans, but including migratory chains as in rodents. Neural progenitors were organized in niches in the subependymal area and a decline in their number was observed with age. Adult-young dogs contained migratory cells capable to expand and differentiate in vitro according with previous results obtained in rodents, primates, humans, pigs, and dogs. Some adult animals presented perivascular niches outside the V-SVZ. Our observations evidence a great similarity between canine and human V-SVZ indicating that the dog may be better representative of neurogenic events in humans, compared with rodents. Accordingly with our results, we conclude that dogs are a valuable animal model of adult neurogenesis in comparative and preclinical studies.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Cães/anatomia & histologia , Cães/metabolismo , Nicho de Células-Tronco , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/ultraestrutura , Células Cultivadas , Cães/crescimento & desenvolvimento , Feminino , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/ultraestrutura , Especificidade da Espécie
5.
Development ; 144(8): 1566-1577, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28289129

RESUMO

Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He-/- mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development.


Assuntos
Corpo Estriado/citologia , Proteínas de Ligação a DNA/metabolismo , Globo Pálido/citologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Contagem de Células , Pontos de Checagem do Ciclo Celular , Morte Celular , Proliferação de Células , Ciclina E/metabolismo , Fase G1 , Camundongos Knockout , Atividade Motora , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Fenótipo , Fase S
6.
Exp Neurol ; 291: 20-35, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28131724

RESUMO

Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were multipotent and kept the ability to differentiate to region specific mature neuronal phenotypes.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Fetais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Análise de Variância , Encéfalo/citologia , Encéfalo/embriologia , Sobrevivência Celular , Células Cultivadas , Células-Tronco Fetais/fisiologia , Feto , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Idade Gestacional , Humanos , Antígeno Ki-67 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo
7.
Brain ; 136(Pt 4): 1161-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23518711

RESUMO

Activating transcription factor 5 (ATF5) is a basic-leucine-zipper transcription factor of the ATF/CREB family. The Atf5 gene generates two transcripts, Atf5α and Atf5ß, of which Atf5α is known to be selectively translated upon endoplasmic reticulum stress response in non-neuronal cells. ATF5 is highly expressed in the developing brain where it modulates proliferation of neural progenitor cells. These cells show a high level of ATF5 that has to decrease to allow them to differentiate into mature neurons or glial cells. This has led to the extended notion that differentiated neural cells do not express ATF5 unless they undergo tumourigenic transformation. However, no systematic analysis of the distribution of ATF5 in adult brain or of its potential role in neuronal endoplasmic reticulum stress response has been reported. By immunostaining here we confirm highest ATF5 levels in neuroprogenitor cells of the embryonic and adult subventricular zone but also found ATF5 in a large variety of neurons in adult mouse brain. By combining Atf5 in situ hybridization and immunohistochemistry for the neuronal marker NeuN we further confirmed Atf5 messenger RNA in adult mouse neurons. Quantitative reverse transcriptase polymerase chain reaction demonstrated that Atf5α is the most abundant transcript in adult mouse encephalon and injection of the endoplasmic reticulum stress inducer tunicamycin into adult mouse brain increased neuronal ATF5 levels. Accordingly, ATF5 levels increased in hippocampal neurons of a mouse model of status epilepticus triggered by intra-amygdala injection of kainic acid, which leads to abnormal hippocampal neuronal activity and endoplasmic reticulum stress. Interestingly, ATF5 upregulation occurred mainly in hippocampal neuronal fields that do not undergo apoptosis in this status epilepticus model such as CA1 and dentate gyrus, thus suggesting a neuroprotective role. This was confirmed in a primary neuronal culture model in which ATF5 overexpression resulted in decreased endoplasmic reticulum stress-induced apoptosis and the opposite result was achieved by Atf5 RNA interference. Furthermore, in vivo administration of the eIF2α phosphatase inhibitor salubrinal resulted in increased ATF5 hippocampal levels and attenuated status epilepticus-induced neuronal death in the vulnerable CA3 subfield. In good agreement with the neuroprotective effect of increased ATF5, we found that apoptosis-resistant epileptogenic foci from patients with temporal lobe epilepsy also showed increased levels of ATF5. Thus, our results demonstrate that adult neurons express ATF5 and that they increase its levels upon endoplasmic reticulum stress as a pro-survival mechanism, thus opening a new field for neuroprotective strategies focused on ATF5 modulation.


Assuntos
Fatores Ativadores da Transcrição/biossíntese , Estresse do Retículo Endoplasmático/fisiologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cinamatos/administração & dosagem , Cinamatos/farmacologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estado Epiléptico/tratamento farmacológico , Tioureia/administração & dosagem , Tioureia/análogos & derivados , Tioureia/farmacologia
8.
Stem Cells Dev ; 21(12): 2239-51, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22142223

RESUMO

Development of the nervous system is finely regulated by consecutive expression of cell-specific transcription factors. Here we show that Helios, a member of the Ikaros transcription factor family, is expressed in ectodermal and neuroectodermal-derived tissues. During embryonic development, Helios is expressed by several brain structures including the lateral ganglionic eminence (LGE, the striatal anlage); the cingulated, insular and retrosplenial cortex; the hippocampus; and the accessory olfactory bulb. Moreover, Helios is also expressed by Purkinje neurons during postnatal cerebellar development. Within the LGE, Helios expression follows a dynamic spatio-temporal pattern starting at embryonic stages (E14.5), peaking at E18.5, and completely disappearing during postnatal development. Helios is expressed by a small population of nestin-positive neural progenitor cells located in the subventricular zone as well as by a larger population of immature neurons distributed throughout the mantle zone. In the later, Helios is preferentially expressed in the matrix compartment, where it colocalizes with Bcl11b and Foxp1, well-known markers of striatal projection neurons. In addition, we observed that Helios expression is not detected in Dlx1/2 and Gsx2 null mutants, while its expression is maintained in Ascl1 mutants. These findings allow us to introduce a new transcription factor in the cascade of events that take part of striatal development postulating the existence of at least 4 different neural progenitors in the LGE. An Ascl1-independent but Gsx2- & Dlx1/2-dependent precursor will express Helios defining a new lineage for a subset of matrix striatal neurons.


Assuntos
Corpo Estriado/citologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Neurônios/metabolismo , Fatores de Transcrição/fisiologia , Animais , Cerebelo/metabolismo , Corpo Estriado/embriologia , Corpo Estriado/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Nestina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
Neural Dev ; 5: 21, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20735826

RESUMO

BACKGROUND: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. RESULTS: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of ß-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)ß without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. CONCLUSIONS: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Corpo Estriado/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/farmacologia , Animais , Proteínas de Transporte/genética , Contagem de Células , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Corpos Geniculados/embriologia , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/genética , Gravidez , Retinal Desidrogenase/deficiência , Transdução de Sinais/genética , Tubulina (Proteína)/metabolismo
10.
J Comp Neurol ; 518(3): 329-51, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19950118

RESUMO

During central nervous system development, several transcription factors regulate the differentiation of progenitor cells to postmitotic neurons. Here we describe a novel role for Ikaros-1 in the generation of late-born striatal neurons. Our results show that Ikaros-1 is expressed in the boundary of the striatal germinal zone (GZ)/mantle zone (MZ), where it induces cell cycle arrest of neural progenitors by up-regulation of the cyclin-dependent kinase inhibitor (CDKi) p21(Cip1/Waf1). This effect is coupled with the neuronal differentiation of late precursors, which in turn is critical for the second wave of striatal neurogenesis that gives rise to matrix neurons. Consistently, Ikaros(-/-) mice had fewer striatal projecting neurons and, in particular, enkephalin (ENK)-positive neurons. In addition, overexpression of Ikaros-1 in primary striatal cultures increases the number of calbindin- and ENK-positive neurons. Our results also show that Ikaros-1 acts downstream of the Dlx family of transcription factors, insofar as its expression is lost in Dlx1/2 double knockout mice. However, we demonstrate that Ikaros-1 and Ebf-1 independently regulate the final determination of the two populations of striatal projection neurons of the matrix compartment, ENK- and substance P-positive neurons. In conclusion, our findings identify Ikaros-1 as a modulator of cell cycle exit of neural progenitors that gives rise to the neurogenesis of ENK-positive striatal neurons.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Corpo Estriado/embriologia , Encefalinas/metabolismo , Fator de Transcrição Ikaros/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Calbindinas , Proteínas de Ciclo Celular/genética , Diferenciação Celular/fisiologia , Corpo Estriado/citologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Vias Eferentes/citologia , Vias Eferentes/embriologia , Genes cdc/fisiologia , Proteínas de Homeodomínio/genética , Fator de Transcrição Ikaros/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Substância P/metabolismo , Transativadores/genética , Fatores de Transcrição/genética
11.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit 1C.8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19585460

RESUMO

Two different methods have been adopted for the cryopreservation of human embryonic stem cells (hESCs): vitrification and conventional slow freezing/rapid thawing. However, these methods present poor viability and high differentiation rates. Therefore, the development of an efficient cryopreservation protocol for hESCs is one of the major challenges for the application of these cells in clinical therapy and regenerative medicine. A novel method for the cryopreservation of dissociated hESCs in the presence of a selective Rho-associated kinase (ROCK) inhibitor that increases cell survival and the efficiency of colony formation of cryopreserved hESCs has been developed. Moreover, this protocol improves the existing methods presenting short recovery times and hardly any differentiation rates. Thus, an easy handling protocol that allows the cryopreservation of large amounts of hESCs is described.


Assuntos
Criopreservação/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/citologia , Humanos , Masculino , Microscopia de Contraste de Fase
12.
Mol Biol Cell ; 20(5): 1478-92, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19144827

RESUMO

Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function.


Assuntos
Proteínas do Olho/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Células Cultivadas , Proteínas do Olho/análise , Proteína Huntingtina , Imuno-Histoquímica , Proteínas de Membrana Transportadoras , Camundongos , Mutação , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Transporte Proteico/fisiologia , Fator de Transcrição AP-1/metabolismo , Proteínas rab de Ligação ao GTP/análise
13.
J Neurosci Res ; 85(12): 2686-701, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17348039

RESUMO

Embryonic stem (ES) cells have great potential for cell replacement in neurodegenerative disorders. Implantation of these cells into the brain, however, requires their prior differentiation. We examined the interplay between leukemia inhibitory factor (LIF) and retinoic acid (RA) on neural differentiation of mouse ES (mES) cells. Mouse embryonic stem cells were allowed to form cell aggregates, the so-called embryoid bodies (EBs), in the absence or presence of LIF. In the absence of LIF, mES cells downregulated the expression of the undifferentiated mES cell marker Oct-3/4, and increased mRNA levels of two neural precursor markers, Sox-1 and Nestin, as well as the neuronal marker beta-tubulin III. This neuronal differentiation was enhanced by treating EBs with RA. Moreover, RA irreversibly increased the number of postmitotic neurons in culture, as shown by the reduction of proliferating mES cells and the increase in beta-tubulin III-positive cells 6 days after RA removal, which in turn affected mES cell viability. The addition of LIF during EBs formation, however, blocked completely this neuronal differentiation. Our findings also showed that pre-differentiation of mES cells in vitro avoided the teratocarcinoma formation observed when proliferating mES cells were grafted into the brain. In addition, mES cells pre-differentiated with RA in culture showed a reduction in proliferation and the presence of neural phenotypes after grafting. In conclusion, the present results indicate that RA enhances neuronal differentiation of mES cells in the absence of LIF, although it compromises cell viability and transplantation.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Neurônios/metabolismo , Células-Tronco/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Citometria de Fluxo/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Marcação In Situ das Extremidades Cortadas , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Proteínas de Transporte de Cátions Orgânicos/metabolismo , RNA Mensageiro/biossíntese , Fatores de Transcrição SOXB1 , Ativação Transcricional/efeitos dos fármacos
14.
Eur J Neurosci ; 23(4): 1063-70, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16519671

RESUMO

The excitability of dopaminergic (DA) neurons in the substantia nigra is controlled by the convergent activity of multiple glutamatergic afferents. Here, we show that vesicular glutamate transporter 3 (VGLUT3)-immunoreactive (ir) terminals segregate to the perisomatic region of DA neurons in the substantia nigra pars compacta, and VGLUT3 decorates a synapse population distinct from those marked by vesicular glutamate transporters 1 and 2. VGLUT3-ir nerve endings form asymmetric terminals on DA neurons. Retrograde tracing suggests the superior colliculus as an origin of excitatory VGLUT3-ir afferents. Collectively, our data indicate that VGLUT3 identifies a novel excitatory terminal subset that contributes to the tuning of DA cell excitability in the substantia nigra.


Assuntos
Neurônios/citologia , Terminações Pré-Sinápticas/metabolismo , Substância Negra/citologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Western Blotting/métodos , Cromonas , Dextranos/metabolismo , Imunofluorescência/métodos , Microscopia Imunoeletrônica/métodos , Neurônios/metabolismo , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
15.
J Neurosci ; 24(35): 7727-39, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342740

RESUMO

The mechanism that controls the selective vulnerability of striatal neurons in Huntington's disease is unclear. Brain-derived neurotrophic factor (BDNF) protects striatal neurons and is regulated by Huntingtin through the interaction with the neuron-restrictive silencer factor. Here, we demonstrate that the downregulation of BDNF by mutant Huntingtin depends on the length and levels of expression of the CAG repeats in cell cultures. To analyze the functional effects of these changes in BDNF in Huntington's disease, we disrupted the expression of bdnf in a transgenic mouse model by cross-mating bdnf(+/ -) mice with R6/1 mice. Thus, we compared transgenic mice for mutant Huntingtin with different levels of BDNF. Using this double mutant mouse line, we show that the deficit of endogenous BDNF modulates the pathology of Huntington's disease. The decreased levels of this neurotrophin advance the onset of motor dysfunctions and produce more severe uncoordinated movements. This behavioral pathology correlates with the loss of striatal dopamine and cAMP-regulated phosphoprotein-32-positive projection neurons. In particular, the insufficient levels of BDNF cause specific degeneration of the enkephalinergic striatal projection neurons, which are the most affected cells in Huntington's disease. This neuronal dysfunction can specifically be restored by administration of exogenous BDNF. Therefore, the decrease in BDNF levels plays a key role in the specific pathology observed in Huntington's disease by inducing dysfunction of striatal enkephalinergic neurons that produce severe motor dysfunctions. Hence, administration of exogenous BDNF may delay or stop illness progression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Encefalinas/deficiência , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Idade de Início , Animais , Ataxia/genética , Fator Neurotrófico Derivado do Encéfalo/deficiência , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Morte Celular , Linhagem Celular Transformada , Coreia/genética , Corpo Estriado/citologia , Cruzamentos Genéticos , Endocitose , Encefalinas/biossíntese , Regulação da Expressão Gênica , Proteína Huntingtina , Doença de Huntington/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transtornos dos Movimentos/genética , Degeneração Neural , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Células-Tronco/citologia , Transfecção , Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...