Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2021: 1643631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510835

RESUMO

[This corrects the article DOI: 10.1155/2017/9302761.].

2.
J Alzheimers Dis ; 70(2): 525-540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31256128

RESUMO

Mitochondrial alterations and oxidative stress are common features of Alzheimer's disease brain and peripheral tissues. Moreover, mitochondrial recycling process by autophagy has been found altered in the sporadic form of the disease. However, the contribution of the main proteins involved in this pathology such as amyloid-ß protein precursor (AßPP) and tau needs to be achieved. With this aim, human unmodified fibroblasts were transduced with lentivectors encoding APP and Tau and treated with CCCP to study the mitophagy process. Both AßPP and tau separately increased autophagy flux mainly by improving degradation phase. However, in the specific case of mitophagy, labeling of mitochondria by PINK1 and PARK2 to be degraded by autophagy seemed reduced, which correlates with the long-term accumulation of mitochondria. Nevertheless, the combination of tau and AßPP was necessary to cause a mitophagy functional impairment reflected in the accumulation of depolarized mitochondria labeled by PINK1. The overexpression of Tau and APP recapitulates the mitophagy failure previously found in sporadic Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Mitofagia/fisiologia , Proteínas tau/biossíntese , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas tau/genética
3.
Mol Neurobiol ; 56(12): 8220-8236, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31203573

RESUMO

Adult neurogenesis defects have been demonstrated in the brains of Alzheimer's disease (AD) patients. The neurogenesis impairment is an early critical event in the course of familiar AD (FAD) associated with neuronal loss. It was suggested that neurologic dysfunction in AD may be caused by impaired functioning of hippocampal neural stem cells (NSCs). Multiple metabolic and structural abnormalities in neural mitochondria have long been suspected to play a critical role in AD pathophysiology. We hypothesize that the cause of such abnormalities could be defective elimination of damaged mitochondria. In the present study, we evaluated mitophagy efficacy in a cellular AD model, hiPSC-derived NSCs harboring the FAD-associated PS1 M146L mutation. We found several mitochondrial respiratory chain defects such as lower expression levels of cytochrome c oxidase (complex IV), cytochrome c reductase (complex III), succinate dehydrogenase (complex II), NADH:CoQ reductase (complex I), and also ATP synthase (complex V), most of which had been previously associated with AD. The mitochondrial network morphology and abundance in these cells was aberrant. This was associated with a marked mitophagy failure stemming from autophagy induction blockage, and deregulation of the expression of proteins involved in mitochondrial dynamics. We show that treating these cells with autophagy-stimulating drug bexarotene restored autophagy and compensated mitochondrial anomalies in PS1 M146L NSCs, by enhancing the clearance of mitochondria. Our data support the hypothesis that pharmacologically induced mitophagy enhancement is a relevant and novel therapeutic strategy for the treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Bexaroteno/farmacologia , Células-Tronco Pluripotentes Induzidas/patologia , Mitofagia/efeitos dos fármacos , Células-Tronco Neurais/patologia , Presenilina-1/genética , DNA Mitocondrial/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo
4.
Oxid Med Cell Longev ; 2017: 9302761, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201274

RESUMO

Sporadic Alzheimer's disease corresponds to 95% of cases whose origin is multifactorial and elusive. Mitochondrial dysfunction is a major feature of Alzheimer's pathology, which might be one of the early events that trigger downstream principal events. Here, we show that multiple genes that control mitochondrial homeostasis, including fission and fusion, are downregulated in Alzheimer's patients. Additionally, we demonstrate that some of these dysregulations, such as diminished DLP1 levels and its mitochondrial localization, as well as reduced STOML2 and MFN2 fusion protein levels, take place in fibroblasts from sporadic Alzheimer's disease patients. The analysis of mitochondrial network disruption using CCCP indicates that the patients' fibroblasts exhibit slower dynamics and mitochondrial membrane potential recovery. These defects lead to strong accumulation of aged mitochondria in Alzheimer's fibroblasts. Accordingly, the analysis of autophagy and mitophagy involved genes in the patients demonstrates a downregulation indicating that the recycling mechanism of these aged mitochondria might be impaired. Our data reinforce the idea that mitochondrial dysfunction is one of the key early events of the disease intimately related with aging.


Assuntos
Doença de Alzheimer/patologia , Mitocôndrias/metabolismo , Idoso , Envelhecimento , Doença de Alzheimer/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Doxorrubicina/toxicidade , Dinaminas , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos
5.
Front Mol Neurosci ; 10: 291, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959184

RESUMO

Familial Alzheimer's disease (FAD) is clearly related with the accumulation of amyloid-beta (Aß) and its deleterious effect on mitochondrial function is well established. Anomalies in autophagy have also been described in these patients. In the present work, functional analyses have been performed to study mitochondrial recycling process in patient-derived fibroblasts and neurons from induced pluripotent stem cells harboring the presenilin 1 mutation A246E. Mitophagy impairment was observed due to a diminished autophagy degradation phase associated with lysosomal anomalies, thus causing the accumulation of dysfunctional mitochondria labeled by Parkin RBR E3 ubiquitin protein ligase (PARK2). The failure of mitochondrial recycling by autophagy was enhanced in the patient-derived neuronal model. Our previous studies have demonstrated similar mitophagy impairment in sporadic Alzheimer's disease (AD); therefore, our data indicate that mitophagy deficiency should be considered a common nexus between familial and sporadic cases of the disease.

6.
Neurosci Lett ; 655: 101-108, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28689927

RESUMO

Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Proteínas tau/metabolismo , Regiões 3' não Traduzidas , Doença de Alzheimer/metabolismo , Animais , Sequência de Bases , Éxons , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , RNA Mensageiro/genética , Proteínas tau/genética
7.
Cell Mol Life Sci ; 74(6): 1153-1163, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27832289

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is a serine-threonine kinase implicated in multiple processes and signaling pathways. Its dysregulation is associated with different pathological conditions including Alzheimer's disease (AD). Here we demonstrate how changes in GSK-3ß activity and/or levels regulate the production and subsequent secretion of fractalkine, a chemokine involved in the immune response that has been linked to AD and to other different neurological disorders. Treatment of primary cultured neurons with GSK-3ß inhibitors such as lithium and AR-A014418 decreased full-length fractalkine in total cell extracts. Opposite effects were observed after neuron transduction with a lentiviral vector overexpressing the kinase. Biotinylation assays showed that those changes mainly affect the plasma membrane-associated form of the protein, an observation that positively correlates with changes in the levels of its soluble form. These effects were confirmed in lithium-treated wild type (wt) mice and in GSK-3ß transgenic animals, as well as in brain samples from AD patients, evident as age-dependent (animals) or Braak stage dependent changes (humans) in both the membrane-bound and the soluble forms of the protein. Further immunohistochemical analyses demonstrated how GSK-3ß exerts these effects by affecting the trafficking of the chemokine from the Golgi to the plasma membrane, in different and opposite ways when the levels/activity of the kinase are increased or decreased. This work provides for the first time a mechanism linking GSK-3ß and fractalkine both in vitro and in vivo, with important implications for neurological disorders and especially for AD, in which levels of this chemokine might be useful as a diagnostic tool.


Assuntos
Doença de Alzheimer/metabolismo , Membrana Celular/metabolismo , Quimiocina CX3CL1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Complexo de Golgi/metabolismo , Animais , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transporte Proteico , Solubilidade , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
8.
Hum Mol Genet ; 25(4): 792-806, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26721933

RESUMO

Mitochondrial anomalies have been previously reported in patients' brain and peripheral tissue, suggesting their relevance in sporadic Alzheimer's disease (AD). The present work evaluates mitochondrial function and recycling in human fibroblasts and brain biopsies. Functional studies using patients' skin fibroblasts showed slower mitochondrial membrane potential recovery after a mitochondrial insult together with alterations in lysosomes and autophagy, accompanied by an increase of oxidized and ubiquitinated proteins. Impairment in mitophagy has been proven in these cells due to diminished PARK2 and insufficient vesicle induction, accumulating depolarized mitochondria and PINK1. Augmented Δ1 PINK1 fragment levels suggest an inhibitory effect over PARK2 translocation to the mitochondria, causing the accumulation of activated PINK1. Moreover, the overexpression of PARK2 diminished ubiquitinated proteins accumulation, improves its targeting to mitochondria and potentiates autophagic vesicle synthesis. This allows the reversion of mitophagy failure reflected in the recovery of membrane potential and the decrease of PINK1 and mitochondria accumulation. Sporadic AD fibroblasts exhibited alterations similar to what it could be found in patients' hippocampal samples at early stages of the disease, where there was an accumulation of PINK1 and Δ1 PINK1 together with abnormally increased mitochondrial content. Our findings indicate that mitophagy alterations can be considered a new hallmark of sporadic AD and validate the use of fibroblasts for modelling this pathology.


Assuntos
Doença de Alzheimer/patologia , Mitocôndrias/patologia , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/biossíntese , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Autofagia/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Cultura Primária de Células , Proteínas Quinases/metabolismo , Transfecção , Ubiquitina-Proteína Ligases/administração & dosagem , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Oxid Med Cell Longev ; 2013: 162152, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840916

RESUMO

There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.


Assuntos
Doença de Alzheimer/patologia , Mitocôndrias/patologia , Doença de Alzheimer/tratamento farmacológico , Animais , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Humanos
11.
Neurobiol Dis ; 37(3): 622-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20004245

RESUMO

It has been proposed that deregulation of neuronal glycogen synthase kinase 3 (GSK3) activity may be a key feature in Alzheimer disease pathogenesis. We have previously generated transgenic mice that overexpress GSK3beta in forebrain regions including dentate gyrus (DG), a region involved in learning and memory acquisition. We have found that GSK3 overexpression results in DG degeneration. To test whether tau protein modified by GSK3 plays a role in that neurodegeneration, we have brought GSK3 overexpressing mice to a tau knockout background. Our results indicate that the toxic effect of GSK3 overexpression is milder and slower in the absence of tau. Thus, we suggest that the hyperphosphorylated tau mediates, at least in part, the pathology observed in the brain of GSK3 overexpressing mice.


Assuntos
Doença de Alzheimer/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Deficiências da Aprendizagem/metabolismo , Degeneração Neural/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Atrofia/genética , Atrofia/metabolismo , Atrofia/patologia , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo/genética , Regulação Enzimológica da Expressão Gênica/genética , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Hipocampo/patologia , Hipocampo/fisiopatologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , beta Catenina/metabolismo , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...