Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089595

RESUMO

Phosphate control of the biosynthesis of secondary metabolites in Streptomyces is mediated by the two component system PhoR-PhoP. Linked to the phoR-phoP cluster, and expressed in the opposite orientation, is a phoU-like encoding gene with low identity to the phoU gene of Escherichia coli. Expression of this phoU-like gene is strictly dependent on PhoP activation. We have isolated a PhoU-null mutant and used transcriptomic and RNA-sequencing (RNA-seq) procedures to identify its transcription start site and regulation. RNA-seq studies identified two transcription start sites, one upstream of phoU and the second upstream of the mptA gene. Whereas transcription of PhoU is entirely dependent on PhoP, expression of the downstream mtpA gene is only partially dependent on PhoP activation. The phoU mutant grows more slowly than the parental strain, sporulates poorly and the spores lack pigmentation. Production of actinorhodin and undecylprodigiosin decreased in the phoU mutant, indicating that PhoU has a positive modulating effect on production of these antibiotics. Indeed, transcriptional studies of expression of the actII-ORF4 and redD genes indicated that the PhoU protein activates expression of these antibiotic regulators. Using the glpQ1 promoter as in vivo reporter of the activity of the PHO regulon genes, we observed that expression of glpQ1 is negatively modulated by PhoU. These results were confirmed by reverse transcription-PCR studies of three genes of the PHO regulon; that is, glpQ1, pstS and phoR. In conclusion, PhoU acts as a negative modulator of expression of the PHO regulon genes and as phoU expression is strictly dependent on PhoP activation, this mechanism appears to work as a feed-back control mechanism (self-regulation).The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.130.

2.
Future Microbiol ; 9(5): 603-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24957088

RESUMO

AIM: The main objective of this study is to understand the mechanism of vancomycin resistance in a Streptomyces coelicolor disrupted mutant highly resistant to vancomycin. MATERIALS & METHODS: Different techniques have been performed in the study including gene disruption, primer extension, antibiotic susceptibility tests, electron microscopy, confocal microscopy, cell wall analysis and microarrays. RESULTS: During the phenotypical characterization of mutant strains affected in phosphate-regulated genes of unknown function, we found that the S. coelicolor SCO2594 disrupted mutant was highly resistant to vancomycin and had other phenotypic alterations such as antibiotic overproduction, impaired growth and reduction of phosphate cell wall content. Transcriptomic studies with this mutant indicated a relationship between vancomycin resistance and cell wall stress. CONCLUSION: We identified a S. coelicolor mutant highly resistant to vancomycin in both high and low phosphate media. In addition to Van proteins, others such as WhiB or SigE appear to be involved in this regulatory mechanism.


Assuntos
Parede Celular/patologia , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Infecção Hospitalar/microbiologia , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Mutação , Fosfatos/química , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...