Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687545

RESUMO

This study compares subtractive manufacturing (SM) and additive manufacturing (AM) techniques in the production of stainless-steel parts with non-stick coatings. While subtractive manufacturing involves the machining of rolled products, additive manufacturing employs the FFF (fused filament fabrication) technique with metal filament and sintering. The applied non-stick coatings are commercially available and are manually sprayed with a spray gun, followed by a curing process. They are an FEP (fluorinated ethylene propylene)-based coating and a sol-gel ceramic coating. Key properties such as surface roughness, water droplet sliding angle, adhesion to the substrate and wear resistance were examined using abrasive blasting techniques. In the additive manufacturing process, a higher roughness of the samples was detected. In terms of sliding angle, variations were observed in the FEP-based coatings and no variations were observed in the ceramic coatings, with a slight increase for FEP in AM. In terms of adhesion to the substrate, the ceramic coatings applied in the additive process showed a superior behavior to that of subtractive manufacturing. On the other hand, FEP coatings showed comparable results for both techniques. In the wear resistance test, ceramic coatings outperformed FEP coatings for both techniques. In summary, additive manufacturing of non-stick coatings on stainless steel showed remarkable advantages in terms of roughness, adhesion and wear resistance compared to the conventional manufacturing approach. These results are of relevance in fields such as medicine, food industry, chemical industry and marine applications.

2.
Polymers (Basel) ; 15(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771886

RESUMO

The aim of this work was to conduct a dimensional study, in terms of microgeometry, using parts from an additive manufacturing process with fused filament fabrication (FFF) technology. As in most cases of additive manufacturing processes, curved surfaces were obtained via approximation of planes with different inclinations. The focus of this experimental study was to analyze the surface roughness of curve geometry from surface-roughness measurements of the plane surfaces that generate it. Three relevant manufacturing parameters were considered: layer height, nozzle diameter and material. Taguchi's experimental design based on the Latin square was applied to optimize the set of specimens used. For the manufactured samples, the surface-roughness parameters Ra (roughness average), Rq (root mean square roughness) and Rz (maximum height) were obtained in eight planes of different inclinations (0° to 90°). The results were analyzed using both a graphical model and an analysis of variance study (ANOVA), demonstrating the dependency relationships among the parameters considered and surface finish. The best surface roughness was reached at 85°, with a global average Ra value of 8.66 µm, increasing the average Ra value from 6.39 µm to 11.57 µm according to the layer height increase or decreasing it slightly, from 8.91 µm to 8.41 µm, in relation to the nozzle diameter increase. On the contrary, the worst surface roughness occurred at 20°, with a global average Ra value of 19.05 µm. Additionally, the theoretical profiles and those from the surface-roughness measurement were found to coincide greatly. Eventually, the eight regression curves from the ANOVA allowed prediction of outputs from future specimens tested under different conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...