Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 21(1): 41-51, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11173219

RESUMO

Reelin, an extracellular matrix protein, plays a crucial role in cortical development. By using Reelin-immunohistochemistry in different vertebrates (fish, amphibians, reptiles, and mammals : insectivores, odontocetes, rodents, carnivores and man) we show here that Reelin is also expressed by a variety of neurons in the adult pallium. In the everted telencephalon of the zebrafish, Reelin-positive neurons are widely distributed over the dorsal pallium. In land vertebrates, the most consistent and evolutionary conserved location of Reelin-expressing neurons is in the cell-sparse molecular layer associated with laminated cortical organization. We describe an additional heterogeneous population of Reelin-positive neurons outside the molecular layer, the location and distribution of which are more variable, and which may reflect major evolutionary changes in cortical architecture. In squamate reptiles, the Reelin-negative main cell layer is flanked by a superficial and a deep plexiform layer which both contain Reelin-expressing neurons. In mammals, Reelin-positive interneurons are dispersed throughout layers II--VI; the human neocortex is particularly poor in Reelin-positive interneurons. Reelin is also expressed by large stellate and modified pyramidal neurons in layer II of the mammalian entorhinal cortex, and in the superficial lateral cortex of lizards. Examination of this cell population (layer II Pre-alpha) in human brains of different age groups points to a decrease in Reelin-expression in the course of adult life.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Vertebrados/metabolismo , Anfíbios , Animais , Gatos , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Peixes , Humanos , Imuno-Histoquímica , Mamíferos , Proteína Reelina , Répteis , Serina Endopeptidases
2.
Brain Res Mol Brain Res ; 26(1-2): 74-80, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7854069

RESUMO

Haloperidol, a dopamine receptor antagonist clinically used as an antipsychotic drug, induces long-term deleterious effects in offspring development when administered prenatally. However, the basis for this overall response to the drug remains unknown. Here we describe that prenatal administration of haloperidol in rats induces a drastic and selective reduction in the expression of plasticity-related genes in neonate forebrain, but not in mesencephalon. GABAergic and enkephalinergic markers such as glutamic acid decarboxylase activity and mRNA, and preproenkephalin mRNA were also diminished in forebrain. However, the expression of other genes such as epidermal growth factor-receptor, glial fibrillary acidic protein, and several proto-oncogenes (src, fos and myc), and a cholinergic marker such as choline acetyltransferase activity were unaltered. In addition, haloperidol promoted a significant decrease in mitotic cell number and cellular density in the striatum, one of the forebrain regions with the highest dopamine receptor density. These findings suggest that prenatal dopamine receptor occupancy may be a critical factor in controlling the development of forebrain target cells through mechanisms involving changes in the expression of plasticity-related genes.


Assuntos
Expressão Gênica/efeitos dos fármacos , Haloperidol/farmacologia , Mesencéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Prosencéfalo/metabolismo , Actinas/biossíntese , Animais , Animais Recém-Nascidos , Northern Blotting , Calmodulina/biossíntese , Moléculas de Adesão Celular Neuronais/biossíntese , Encefalinas/biossíntese , Feminino , Proteína GAP-43 , Proteína Glial Fibrilar Ácida/biossíntese , Glutamato Descarboxilase/biossíntese , Haloperidol/administração & dosagem , Glicoproteínas de Membrana/biossíntese , Mesencéfalo/efeitos dos fármacos , Proteínas do Tecido Nervoso/biossíntese , Proteínas de Neurofilamentos/biossíntese , Plasticidade Neuronal/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/biossíntese , Gravidez , Prosencéfalo/efeitos dos fármacos , Precursores de Proteínas/biossíntese , Proto-Oncogenes/efeitos dos fármacos , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Receptores do Fator de Crescimento Derivado de Plaquetas/biossíntese
3.
J Anat ; 164: 93-100, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2606798

RESUMO

The ventral striatum nucleus (VS) begins development at Stage 31 (E. 31) from the neuroblasts which proceed from the cellular proliferation of both the ventral and terminal sulci. The ultrastructural features of the neuroblasts of VS between E. 31 and E. 34 have the aspect of immature cells, but as from E. 38 neuronal maturity is gradual until hatching. At E. 34 cellular death occurs. The first degenerated cells belong to Type I (nuclear degeneration) of the pycnotic cells; as from E. 40 cytoplasmic degeneration appears. Vascularisation starts at E. 35 and from E. 38 the first synaptic contacts are observed, especially those of the axodendritic type.


Assuntos
Lagartos/embriologia , Telencéfalo/embriologia , Animais , Feminino , Microscopia Eletrônica , Gravidez , Telencéfalo/citologia , Telencéfalo/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...