Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 51(8): 1444-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15311831

RESUMO

Fully differential amplifiers yield large differential gains and also high common mode rejection ratio (CMRR), provided they do not include any unmatched grounded component. In biopotential measurements, however, the admissible gain of amplification stages located before dc suppression is usually limited by electrode offset voltage, which can saturate amplifier outputs. The standard solution is to first convert the differential input voltage to a single-ended voltage and then implement any other required functions, such as dc suppression and dc level restoring. This approach, however, yields a limited CMRR and may result in a relatively large equivalent input noise. This paper describes a novel fully differential biopotential amplifier based on a fully differential dc-suppression circuit that does not rely on any matched passive components, yet provides large CMRR and fast recovery from dc level transients. The proposed solution is particularly convenient for low supply voltage systems. An example implementation, based on standard low-power op amps and a single 5-V power supply, accepts input offset voltages up to +/-500 mV, yields a CMRR of 102 dB at 50 Hz, and provides, in accordance with the AAMI EC38 standard, a reset behavior for recovering from overloads or artifacts.


Assuntos
Amplificadores Eletrônicos , Eletrofisiologia/instrumentação , Análise de Falha de Equipamento , Desenho Assistido por Computador , Desenho de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...