Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 36(3): 447-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25641329

RESUMO

Therapeutic enzymes are one of the most promising applications of this century in the field of pharmaceutics. Biocatalyst properties can be improved by enzyme immobilization on nano-objects, thereby increasing stability and reusability and also enhancing the targeting to specific tissues and cells. Therapeutic biocatalyst-nanodevice complexes will provide new tools for the diagnosis and treatment of old and newly emerging pathologies. Among the advantages of this approach are the wide span and diverse range of possible materials and biocatalysts that promise to make the matrix-enzyme combination a unique modality for therapeutic delivery. This review focuses on the most significant techniques and nanomaterials used for enzyme immobilization such as metallic superparamagnetic, silica, and polymeric and single-enzyme nanoparticles. Finally, a review of the application of these nanodevices to different pathologies and modes of administration is presented. In short, since therapeutic enzymes constitute a highly promising alternative for treating a variety of pathologies more effectively, this review is aimed at providing the comprehensive summary needed to understand and improve this burgeoning area.


Assuntos
Sistemas de Liberação de Medicamentos , Enzimas Imobilizadas , Nanomedicina
2.
Colloids Surf B Biointerfaces ; 117: 284-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24657614

RESUMO

Polyvinyl alcohol-pectin (PVA-P) films containing enrofloxacin and keratinase were developed to treat wounds and scars produced by burns and skin injuries. However, in order to prevent enzyme inactivation at the interface between the patch and the scars, crosslinked enzyme aggregates (CLEAs) from a crude extract of keratinase produced by Paecilomyces lilacinus (LPSC#876) were synthesized by precipitation with acetone and crosslinking with glutaraldehyde. Soluble vs. CLEA keratinase (K-CLEA) activities were tested in 59% (v/v) hydrophobic (isobutanol and n-hexane) and hydrophilic (acetone and dimethylsulfoxide) solvents mixtures. K-CLEA activity was 1.4, 1.7 and 6.6 times higher in acetone, n-hexane and isobutanol than the soluble enzyme at 37 °C after 1 h of incubation, respectively. K-CLEA showed at least 45% of enzyme residual activity in the 40-65 °C range, meanwhile the soluble biocatalyst was fully inactivated at 65 °C after 1h incubation. Also, the soluble enzyme was completely inactivated after 12 h at pH 7.4 and 45 °C, even though K-CLEA retained full activity. The soluble keratinase was completely inactivated at 37 °C after storage in buffer solution (pH 7.4) for 2 months, meanwhile K-CLEAs kept 51% of their activity. K-CLEA loaded into polyvinyl alcohol (PVA) and PVA-P cryogels showed six times lower release rate compared to the soluble keratinase at skin pH (5.5). Small angle X-ray scattering (SAXS) analysis showed that K-CLEA bound to pectin rather than to PVA in the PVA-P matrix.


Assuntos
Reagentes de Ligações Cruzadas/química , Criogéis/química , Pectinas/química , Peptídeo Hidrolases/metabolismo , Álcool de Polivinil/química , Agregados Proteicos , Estabilidade Enzimática , Cinética , Concentração Osmolar , Paecilomyces/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/ultraestrutura , Espalhamento a Baixo Ângulo , Solubilidade , Solventes/química , Temperatura , Difração de Raios X
3.
Bioresour Technol ; 145: 280-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23558181

RESUMO

A keratinase isolated from Paecilomyces lilacinus (LPS #876) was tested against proteins present in the skin but the high enzyme activity was detected on collagen. Keratinase was physically immobilized onto PVA-pectin cryogels and enzyme release was 20.8±2.1%, 63.8±0.2%, 41.5±3.5% and 26.0±3.5% in cryogels containing pectins with esterification degrees (DE) 33.0%, 55.0%, 62.7% and 71.7% respectively at 37°C after 3h incubation. In presence of 0.75 M NaCl, the percentage of enzyme release changed to: 57.5±1.5, 65.8±3.8, 57.3±0.2 and 34.0±4.0 for the four pectins respectively. In-vitro studies of enrofloxacin release from PVA-pectin cryogels at pH close to the human skin (pH=5.5) showed 15.0% free antibiotic following first order kinetic at 37°C after 5h incubation. However, in the presence of keratinase only 6.9% of enrofloxacin was released under the same experimental conditions.


Assuntos
Anti-Infecciosos Locais/farmacologia , Enzimas Imobilizadas/farmacologia , Fluoroquinolonas/farmacologia , Infecções/tratamento farmacológico , Peptídeo Hidrolases/farmacologia , Adesivo Transdérmico , Ferimentos e Lesões/microbiologia , Administração Tópica , Criogéis/uso terapêutico , Enrofloxacina , Humanos , Pectinas
4.
Appl Biochem Biotechnol ; 167(5): 1421-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22278052

RESUMO

The release of enrofloxacin entrapped in polyvinyl alcohol (PVA) cryogel at pH 5.5 showed a first-order kinetic, releasing 69.7% of the antibiotic after 4.5 h at 37 °C. In order to slow down the fluoroquinolone release rate, high-methoxylated pectin was added into the cryogel (PVA-P). A film containing 1.0% (w/v) HM pectin and 5.0 µg/ml enrofloxacin released only 3.7% of the antibiotic after 4.5 h. Since the FTIR spectrum showed that most of the interactions between PVA-P matrix and enrofloxacin were due to polar groups (carboxylate and amine), a two-layer film system was designed to modulate the releasing rate of the drug. The top film equilibrated with 0.75 or 1.5 M NaCl release up to 41.9% and 89.0% of the enrofloxacin in 4 h, respectively. The release rate of enrofloxacin was found dependent on NaCl concentration in the upper gel layer. The two-layer cryogel system showed attractive features for transcutaneous antibiotic delivery.


Assuntos
Antibacterianos/química , Criogéis/química , Portadores de Fármacos/química , Fluoroquinolonas/química , Pectinas/química , Álcool de Polivinil/química , Preparações de Ação Retardada , Enrofloxacina , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...