Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(6): e09738, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35770150

RESUMO

Methane is a potent but short-lived greenhouse gas targeted for short-term amelioration of climate change, with enteric methane emitted by ruminants being the most important anthropogenic source of methane. Ruminant production also releases nitrogen to the environment, resulting in groundwater pollution and emissions of greenhouse gas nitrous oxide. We hypothesized that inhibiting rumen methanogenesis in dairy cows with chemical inhibitor 3-nitrooxypropanol (3-NOP) would redirect metabolic hydrogen towards synthesis of microbial amino acids. Our objective was to investigate the effects of 3-NOP on methane emissions, rumen fermentation and nitrogen metabolism of dairy cows fed true protein or urea as nitrogen sources. Eight ruminally-cannulated cows were fed a plant protein or a urea-containing diet during a Control experimental period followed by a methanogenesis inhibition period with 3-NOP supplementation. All diets were unintentionally deficient in nitrogen, and diets supplemented with 3-NOP had higher fiber than diets fed in the Control period. Higher dietary fiber content in the 3-NOP period would be expected to cause higher methane emissions; however, methane emissions adjusted by dry matter and digested organic matter intake were 54% lower with 3-NOP supplementation. Also, despite of the more fibrous diet, 3-NOP shifted rumen fermentation from acetate to propionate. The post-feeding rumen ammonium peak was substantially lower in the 3-NOP period, although that did not translate into greater rumen microbial protein production nor lesser nitrogen excretion in urine. Presumably, because all diets resulted in low rumen ammonium, and intake of digestible organic matter was lower in the 3-NOP period compared to the Control period, the synthesis of microbial amino acids was limited by nitrogen and energy, precluding the evaluation of our hypothesis. Supplementation with 3-NOP was highly effective at decreasing methane emissions with a lower quality diet, both with true protein and urea as nitrogen sources.

2.
Animals (Basel) ; 10(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370008

RESUMO

There is interest in identifying natural products capable of manipulating rumen microbial activity to develop new feed additives for ruminant nutrition as a strategy to reduce methane. Two trials were performed using the in vitro gas production technique to evaluate the interaction of substrate (n = 5) and additive (n = 6, increasing doses: 0, 0.3, 3, 30, and 300 µL/L of essential oils-EO-of Lippia turbinata or Tagetes minuta, and monensin at 1.87 mg/L). The two EO utilized were selected because they differ markedly in their chemical composition, especially in the proportion of oxygenated compounds. For both EO, the interaction between the substrate and additive was significant for all variables; however, the interaction behaved differently for the two EO. Within each substrate, the response was dose-dependent, without effects at a low level of EO and a negative outcome at the highest dose. The intermediate dose (30 µL/L) inhibited methane with a slight reduction on substrate digestibility, with L. turbinata being more effective than T. minuta. It is concluded that the effectiveness of the EO to reduce methane production depends on interactions between the substrate that is fermented and the additive dose that generates different characteristics within the incubation medium (e.g., pH); and thus, the chemical nature of the compounds of the EO modulates the magnitude of this response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...