Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SAR QSAR Environ Res ; 28(5): 367-389, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28590848

RESUMO

Graph derivative indices (GDIs) have recently been defined over N-atoms (N = 2, 3 and 4) simultaneously, which are based on the concept of derivatives in discrete mathematics (finite difference), metaphorical to the derivative concept in classical mathematical analysis. These molecular descriptors (MDs) codify topo-chemical and topo-structural information based on the concept of the derivative of a molecular graph with respect to a given event (S) over duplex, triplex and quadruplex relations of atoms (vertices). These GDIs have been successfully applied in the description of physicochemical properties like reactivity, solubility and chemical shift, among others, and in several comparative quantitative structure activity/property relationship (QSAR/QSPR) studies. Although satisfactory results have been obtained in previous modelling studies with the aforementioned indices, it is necessary to develop new, more rigorous analysis to assess the true predictive performance of the novel structure codification. So, in the present paper, an assessment and statistical validation of the performance of these novel approaches in QSAR studies are executed, as well as a comparison with those of other QSAR procedures reported in the literature. To achieve the main aim of this research, QSARs were developed on eight chemical datasets widely used as benchmarks in the evaluation/validation of several QSAR methods and/or many different MDs (fundamentally 3D MDs). Three to seven variable QSAR models were built for each chemical dataset, according to the original dissection into training/test sets. The models were developed by using multiple linear regression (MLR) coupled with a genetic algorithm as the feature wrapper selection technique in the MobyDigs software. Each family of GDIs (for duplex, triplex and quadruplex) behaves similarly in all modelling, although there were some exceptions. However, when all families were used in combination, the results achieved were quantitatively higher than those reported by other authors in similar experiments. Comparisons with respect to external correlation coefficients (q2ext) revealed that the models based on GDIs possess superior predictive ability in seven of the eight datasets analysed, outperforming methodologies based on similar or more complex techniques and confirming the good predictive power of the obtained models. For the q2ext values, the non-parametric comparison revealed significantly different results to those reported so far, which demonstrated that the models based on DIVATI's indices presented the best global performance and yielded significantly better predictions than the 12 0-3D QSAR procedures used in the comparison. Therefore, GDIs are suitable for structure codification of the molecules and constitute a good alternative to build QSARs for the prediction of physicochemical, biological and environmental endpoints.


Assuntos
Desenho de Fármacos , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Benchmarking , Simulação por Computador , Matemática , Modelos Químicos , Compostos Orgânicos/farmacologia
2.
SAR QSAR Environ Res ; 24(1): 3-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23066866

RESUMO

Versatile event-based approaches for the definition of novel information theory-based indices (IFIs) are presented. An event in this context is the criterion followed in the "discovery" of molecular substructures, which in turn serve as basis for the construction of the generalized incidence and relations frequency matrices, Q and F, respectively. From the resultant F, Shannon's, mutual, conditional and joint entropy-based IFIs are computed. In previous reports, an event named connected subgraphs was presented. The present study is an extension of this notion, in which we introduce other events, namely: terminal paths, vertex path incidence, quantum subgraphs, walks of length k, Sach's subgraphs, MACCs, E-state and substructure fingerprints and, finally, Ghose and Crippen atom-types for hydrophobicity and refractivity. Moreover, we define magnitude-based IFIs, introducing the use of the magnitude criterion in the definition of mutual, conditional and joint entropy-based IFIs. We also discuss the use of information-theoretic parameters as a measure of the dissimilarity of codified structural information of molecules. Finally, a comparison of the statistics for QSPR models obtained with the proposed IFIs and DRAGON's molecular descriptors for two physicochemical properties log P and log K of 34 derivatives of 2-furylethylenes demonstrates similar to better predictive ability than the latter.


Assuntos
Química Orgânica/métodos , Biologia Computacional/métodos , Etilenos/química , Modelos Teóricos , Relação Quantitativa Estrutura-Atividade , Algoritmos , Análise por Conglomerados , Gráficos por Computador , Entropia , Interações Hidrofóbicas e Hidrofílicas , Teoria da Informação , Modelos Lineares , Estrutura Molecular , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...