Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Softw Big Sci ; 4(1): 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33385105

RESUMO

We describe a fully GPU-based implementation of the first level trigger for the upgrade of the LHCb detector, due to start data taking in 2021. We demonstrate that our implementation, named Allen, can process the 40 Tbit/s data rate of the upgraded LHCb detector and perform a wide variety of pattern recognition tasks. These include finding the trajectories of charged particles, finding proton-proton collision points, identifying particles as hadrons or muons, and finding the displaced decay vertices of long-lived particles. We further demonstrate that Allen can be implemented in around 500 scientific or consumer GPU cards, that it is not I/O bound, and can be operated at the full LHC collision rate of 30 MHz. Allen is the first complete high-throughput GPU trigger proposed for a HEP experiment.

2.
Eur Phys J C Part Fields ; 78(3): 256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258409

RESUMO

We use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from ∼ 36 /fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the ( g - 2 ) µ constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses M 1 , 2 , 3 , a common mass for the first-and second-generation squarks m q ~ and a distinct third-generation squark mass m q ~ 3 , a common mass for the first-and second-generation sleptons m ℓ ~ and a distinct third-generation slepton mass m τ ~ , a common trilinear mixing parameter A, the Higgs mixing parameter µ , the pseudoscalar Higgs mass M A and tan ß . In the fit including ( g - 2 ) µ , a Bino-like χ ~ 1 0 is preferred, whereas a Higgsino-like χ ~ 1 0 is mildly favoured when the ( g - 2 ) µ constraint is dropped. We identify the mechanisms that operate in different regions of the pMSSM11 parameter space to bring the relic density of the lightest neutralino, χ ~ 1 0 , into the range indicated by cosmological data. In the fit including ( g - 2 ) µ , coannihilations with χ ~ 2 0 and the Wino-like χ ~ 1 ± or with nearly-degenerate first- and second-generation sleptons are active, whereas coannihilations with the χ ~ 2 0 and the Higgsino-like χ ~ 1 ± or with first- and second-generation squarks may be important when the ( g - 2 ) µ constraint is dropped. In the two cases, we present χ 2 functions in two-dimensional mass planes as well as their one-dimensional profile projections and best-fit spectra. Prospects remain for discovering strongly-interacting sparticles at the LHC, in both the scenarios with and without the ( g - 2 ) µ constraint, as well as for discovering electroweakly-interacting sparticles at a future linear e + e - collider such as the ILC or CLIC.

3.
Eur Phys J C Part Fields ; 77(2): 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28260982

RESUMO

We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass [Formula: see text], distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), [Formula: see text] and [Formula: see text], and for the [Formula: see text] and [Formula: see text] Higgs representations [Formula: see text] and [Formula: see text], a universal trilinear soft SUSY-breaking parameter [Formula: see text], and the ratio of Higgs vevs [Formula: see text]. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + [Formula: see text] events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel [Formula: see text] coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of [Formula: see text] coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.

4.
Eur Phys J C Part Fields ; 75(10): 500, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543400

RESUMO

Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, [Formula: see text], assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau [Formula: see text], stop [Formula: see text] or chargino [Formula: see text], resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the [Formula: see text] coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for [Formula: see text] events and long-lived charged particles, whereas their H / A funnel, focus-point and [Formula: see text] coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is [Formula: see text] coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

5.
Eur Phys J C Part Fields ; 74(12): 3212, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25983642

RESUMO

We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, [Formula: see text], vary independently from the universal soft SUSY-breaking contributions [Formula: see text] to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over [Formula: see text] points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as the ATLAS search for supersymmetric jets + [Formula: see text] signals using the full LHC Run 1 data, the measurements of [Formula: see text] by LHCb and CMS together with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark-matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared at the GUT scale for squarks and sleptons, [Formula: see text], as well as [Formula: see text]. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of [Formula: see text] and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum [Formula: see text] with 21 degrees of freedom (dof) in the NUHM2, to be compared with [Formula: see text] in the CMSSM, and [Formula: see text] in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...