Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 85: 103025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061264

RESUMO

The soil bacterium Pseudomonas putida, especially the KT2440 strain, is increasingly being utilized as a host for biotransformations of both industrial and environmental interest. The foundations of such performance include its robust redox metabolism, ability to tolerate a wide range of physicochemical stresses, rapid growth, versatile metabolism, nonpathogenic nature, and the availability of molecular tools for advanced genetic programming. These attributes have been leveraged for hosting engineered pathways for production of valuable chemicals or degradation/valorization of environmental pollutants. This has in turn pushed the boundaries of conventional enzymology toward previously unexplored reactions in nature. Furthermore, modifications to the physical properties of the cells have been made to enhance their catalytic performance. These advancements establish P. putida as bona fide chassis for synthetic biology, on par with more traditional metabolic engineering platforms.


Assuntos
Engenharia Metabólica , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Biologia Sintética , Biotransformação , Oxirredução
2.
Nucleic Acids Res ; 51(D1): D1558-D1567, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420904

RESUMO

The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.


Assuntos
Bactérias , Bases de Dados Factuais , Bactérias/genética , Clonagem Molecular , DNA , Vetores Genéticos , Fenótipo , Plasmídeos/genética
3.
Methods Mol Biol ; 2479: 37-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583731

RESUMO

The ability to engineer bacterial genomes in an efficient way is crucial for many bio-related technologies. Single-stranded (ss) DNA recombineering technology allows to introduce mutations within bacterial genomes in a very simple and straightforward way. This technology was initially developed for E. coli but was later extended to other organisms of interest, including the environmentally and metabolically versatile Pseudomonas putida. The technology is based on three pillars: (1) adoption of a phage recombinase that works effectively in the target strain, (2) ease of introduction of short ssDNA oligonucleotide that carries the mutation into the bacterial cells at stake and (3) momentary suppression of the endogenous mismatch repair (MMR) through transient expression of a dominant negative mutL allele. In this way, the recombinase protects the ssDNA and stimulates recombination, while MutLE36KPP temporarily inhibits the endogenous MMR system, thereby allowing the introduction of virtually any possible type of genomic edits. In this chapter, a protocol is detailed for easily performing recombineering experiments aimed at entering single and multiple changes in the chromosome of P. putida. This was made by implementing the workflow named High-Efficiency Multi-site genomic Editing (HEMSE), which delivers simultaneous mutations with a simple and effective protocol.


Assuntos
Escherichia coli , Pseudomonas putida , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Edição de Genes/métodos , Genômica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Recombinases/metabolismo
4.
ACS Synth Biol ; 10(8): 2049-2059, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337948

RESUMO

Gram-negative bacteria are endowed with complex outer membrane (OM) structures that allow them to both interact with other organisms and attach to different physical structures. However, the design of reliable bacterial coatings of solid surfaces is still a considerable challenge. In this work, we report that ectopic expression of a fibrinogen-specific nanobody on the envelope of Pseudomonas putida cells enables controllable formation of a bacterial monolayer strongly bound to an antigen-coated support. To this end, either the wild type or a surface-naked derivative of P. putida was engineered to express a hybrid between the ß-barrel of an intimin-type autotransporter inserted in the outer membrane and a nanobody (VHH) moiety that targets fibrinogen as its cognate interaction partner. The functionality of the thereby presented VHH and the strength of the resulting cell attachment to a solid surface covered with the cognate antigen were tested and parametrized with Quartz Crystal Microbalance technology. The results not only demonstrated the value of using bacteria with reduced OM complexity for efficient display of artificial adhesins, but also the potential of this approach to engineer specific bacterial coverings of predetermined target surfaces.


Assuntos
Técnicas de Visualização da Superfície Celular , Pseudomonas putida , Proteínas Recombinantes de Fusão , Anticorpos de Domínio Único , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/genética
5.
Water Res ; 188: 116468, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038714

RESUMO

The efficiency of multi-strain planktonic flocs of bacteria as biocatalytic agents in aqueous media depends to a considerable extent on their three-dimensional aggregation patterns. Yet, numerical methodologies for full characterization of such heterogeneous biomass structures are largely missing. In this work we present a descriptive methodology for quantitatively portraying and identifying suspended cell clumps formed by planktonic bacteria. In order to benchmark the procedure, we tackled the behavior of cells of the environmental and biotechnologically robust species Pseudomonas putida whose surfaces were decorated with genetically encoded adhesins. Upon induction, such adhesins promoted specific inter-bacterial attachment leading to controllable and tractable floc formation in suspension. Microscopy and flow cytometry data were then gathered and further analyzed by means of a distinct metric set. Applying these parameters permitted creating comparable clumping footprints for every sample at both single-cell and population level. The hereby described approach provides a rigorous frame for following the assembly and organization of complex microbial communities as planktonic flocs.


Assuntos
Plâncton , Pseudomonas putida , Biofilmes , Meios de Cultura
6.
Environ Microbiol ; 23(1): 174-189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089610

RESUMO

The role of archetypal ribonucleases (RNases) in the physiology and stress endurance of the soil bacterium and metabolic engineering platform Pseudomonas putida KT2440 has been inspected. To this end, variants of this strain lacking each of the most important RNases were constructed. Each mutant lacked either one exoribonuclease (PNPase, RNase R) or one endoribonuclease (RNase E, RNase III, RNase G). The global physiological and metabolic costs of the absence of each of these enzymes were then analysed in terms of growth, motility and morphology. The effects of different oxidative chemicals that mimic the stresses endured by this microorganism in its natural habitats were studied as well. The results highlighted that each ribonuclease is specifically related with different traits of the environmental lifestyle that distinctively characterizes this microorganism. Interestingly, the physiological responses of P. putida to the absence of each enzyme diverged significantly from those known previously in Escherichia coli. This exposed not only species-specific regulatory functions for otherwise known RNase activities but also expanded the panoply of post-transcriptional adaptation devices that P. putida can make use of for facing hostile environments.


Assuntos
Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Pseudomonas putida/metabolismo , Ecossistema , Endorribonucleases/genética , Escherichia coli/metabolismo , Exorribonucleases/genética , Oxirredução , Pseudomonas putida/genética , Microbiologia do Solo
7.
ACS Synth Biol ; 9(9): 2477-2492, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786355

RESUMO

Environmental bacteria are most often endowed with native surface-attachment programs that frequently conflict with efforts to engineer biofilms and synthetic communities with given tridimensional architectures. In this work, we report the editing of the genome of Pseudomonas putida KT2440 for stripping the cells of most outer-facing structures of the bacterial envelope that mediate motion, binding to surfaces, and biofilm formation. To this end, 23 segments of the P. putida chromosome encoding a suite of such functions were deleted, resulting in the surface-naked strain EM371, the physical properties of which changed dramatically in respect to the wild type counterpart. As a consequence, surface-edited P. putida cells were unable to form biofilms on solid supports and, because of the swimming deficiency and other alterations, showed a much faster sedimentation in liquid media. Surface-naked bacteria were then used as carriers of interacting partners (e.g., Jun-Fos domains) ectopically expressed by means of an autotransporter display system on the now easily accessible cell envelope. Abstraction of individual bacteria as adhesin-coated spherocylinders enabled rigorous quantitative description of the multicell interplay brought about by thereby engineered physical interactions. The model was then applied to parametrize the data extracted from automated analysis of confocal microscopy images of the experimentally assembled bacterial flocks for analyzing their structure and distribution. The resulting data not only corroborated the value of P. putida EM371 over the parental strain as a platform for display artificial adhesins but also provided a strategy for rational engineering of catalytic communities.


Assuntos
Edição de Genes/métodos , Pseudomonas putida/genética , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano/genética , Interações Hidrofóbicas e Hidrofílicas , Pseudomonas putida/fisiologia , Propriedades de Superfície
8.
BMC Bioinformatics ; 21(1): 224, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493227

RESUMO

BACKGROUND: Currently the combination of molecular tools, imaging techniques and analysis software offer the possibility of studying gene activity through the use of fluorescent reporters and infer its distribution within complex biological three-dimensional structures. For example, the use of Confocal Scanning Laser Microscopy (CSLM) is a regularly-used approach to visually inspect the spatial distribution of a fluorescent signal. Although a plethora of generalist imaging software is available to analyze experimental pictures, the development of tailor-made software for every specific problem is still the most straightforward approach to perform the best possible image analysis. In this manuscript, we focused on developing a simple methodology to satisfy one particular need: automated processing and analysis of CSLM image stacks to generate 3D fluorescence profiles showing the average distribution detected in bacterial colonies grown in different experimental conditions for comparison purposes. RESULTS: The presented method processes batches of CSLM stacks containing three-dimensional images of an arbitrary number of colonies. Quasi-circular colonies are identified, filtered and projected onto a normalized orthogonal coordinate system, where a numerical interpolation is performed to obtain fluorescence values within a spatially fixed grid. A statistically representative three-dimensional fluorescent pattern is then generated from this data, allowing for standardized fluorescence analysis regardless of variability in colony size. The proposed methodology was evaluated by analyzing fluorescence from GFP expression subject to regulation by a stress-inducible promoter. CONCLUSIONS: This method provides a statistically reliable spatial distribution profile of fluorescence detected in analyzed samples, helping the researcher to establish general correlations between gene expression and spatial allocation under differential experimental regimes. The described methodology was coded into a MATLAB script and shared under an open source license to make it accessible to the whole community.


Assuntos
Pseudomonas putida/crescimento & desenvolvimento , Estatística como Assunto , Contagem de Colônia Microbiana , Fluorescência , Processamento de Imagem Assistida por Computador , Software
9.
Chembiochem ; 21(22): 3255-3265, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32597553

RESUMO

A variant of the soil bacterium Pseudomonas putida with a genome containing a ∼20 % replacement of the whole of thymine (T) by uracil (U) was made by deleting genes ung (uracil DNA glycosylase) and dut (deoxyuridine 5'-triphosphate nucleotide hydrolase). Proteomic comparisons revealed that, of 281 up-regulated and 96 down-regulated proteins in the Δung Δdut cells, as compared to the wild-type, many were involved in nucleotide metabolism. Unexpectedly, genome uracylation did not greatly change the gross environmental endurance profile of P. putida, increased spontaneous mutagenesis by only twofold and supported expression of heterologous proteins well. As U-enriched DNA is potentially degraded by the base excision repair of recipients encoding a uracil DNA glycosylase, we then tested the spread potential of genetic material originating in the Δung Δdut cells either within the same species or in a commonly used Escherichia coli strain. Transformation and conjugation experiments revealed that horizontal gene transfer of U-containing plasmids fared worse than those made of standard DNA by two orders of magnitude. Although this figure does not guarantee the certainty of containment, it suggests a general strategy for curbing the dispersal of recombinant genetic constructs.


Assuntos
Hidrolases/genética , Pseudomonas putida/genética , Uracila-DNA Glicosidase/genética , Uracila/química , DNA Bacteriano/genética , Hidrolases/metabolismo , Mutação , Conformação de Ácido Nucleico , Pseudomonas putida/enzimologia , Uracila-DNA Glicosidase/metabolismo
10.
Cell Host Microbe ; 28(2): 313-321.e6, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32470328

RESUMO

Selective and targeted removal of individual species or strains of bacteria from complex communities can be desirable over traditional, broadly acting antibacterials in several contexts. However, generalizable strategies that accomplish this with high specificity have been slow to emerge. Here we develop programmed inhibitor cells (PICs) that direct the potent antibacterial activity of the type VI secretion system (T6SS) against specified target cells. The PICs express surface-displayed nanobodies that mediate antigen-specific cell-cell adhesion to effectively overcome the barrier to T6SS activity in fluid conditions. We demonstrate the capacity of PICs to efficiently deplete low-abundance target bacteria without significant collateral damage to complex microbial communities. The only known requirements for PIC targeting are a Gram-negative cell envelope and a unique cell surface antigen; therefore, this approach should be generalizable to a wide array of bacteria and find application in medical, research, and environmental settings.


Assuntos
Antibacterianos/metabolismo , Aderência Bacteriana/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Sistemas de Secreção Tipo VI/metabolismo , Animais , Microbioma Gastrointestinal/fisiologia , Bactérias Gram-Negativas/classificação , Camundongos , Camundongos Endogâmicos C57BL
11.
iScience ; 23(3): 100946, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32179472

RESUMO

Application of single-stranded DNA recombineering for genome editing of species other than enterobacteria is limited by the efficiency of the recombinase and the action of endogenous mismatch repair (MMR) systems. In this work we have set up a genetic system for entering multiple changes in the chromosome of the biotechnologically relevant strain EM42 of Pseudomononas putida. To this end high-level heat-inducible co-transcription of the rec2 recombinase and P. putida's allele mutLE36KPP was designed under the control of the PL/cI857 system. Cycles of short thermal shifts followed by transformation with a suite of mutagenic oligos delivered different types of genomic changes at frequencies up to 10% per single modification. The same approach was instrumental to super-diversify short chromosomal portions for creating libraries of functional genomic segments-e.g., ribosomal-binding sites. These results enabled multiplexing of genome engineering of P. putida, as required for metabolic reprogramming of this important synthetic biology chassis.

12.
Microbiologyopen ; 9(6): 1135-1149, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170856

RESUMO

Actinomycetales, such as the genus Streptomyces, are well-known cell factories employed to produce a wide variety of secondary metabolites for industrial use. However, not only is the genetic engineering of Streptomyces more complicated and tedious than other model laboratory species, such as Escherichia coli, there is also a considerable lack of genetic tools, hindering its adoption as a common chassis for synthetic biology. In this work, 23 novel shuttle vectors are presented that follow the canonical SEVA (Standard European Vector Architecture) common architecture with the goal of increasing the genetic toolbox repertoire for Streptomyces and other actinomycetes. The ORI module of these plasmids is composed of the combination of two origins of replication, one for Gram-negative bacteria and the other for Streptomyces, a Gram-positive bacteria. Origins of replication have been included in the collection for integrative, low-copy number, and medium-to-high-copy number vectors for Streptomyces. Also, a new selection marker has been developed that confers resistance to apramycin. The functionality of these plasmids was tested via the heterologous expression of GFP and the heterologous production of the plant flavonoid apigenin in Streptomyces albus J1074, with successful results in both cases, therefore expanding the current repertoire of genetic manipulation tools in Streptomyces species.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/farmacologia , Apigenina/genética , Apigenina/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Plasmídeos/genética , Origem de Replicação/genética
14.
Environ Microbiol ; 22(1): 45-58, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599106

RESUMO

The mismatch repair (MMR) system is one of the key molecular devices that prokaryotic cells have for ensuring fidelity of DNA replication. While the canonical MMR of E. coli involves 3 proteins (encoded by mutS, mutL and mutH), the soil bacterium Pseudomonads putida has only 2 bona fide homologues (mutS and mutL) and the sensitivity of this abridged system to different types of mismatches is unknown. In this background, sensitivity to MMR of this bacterium was inspected through single stranded (ss) DNA recombineering of the pyrF gene (the prokaryotic equivalent to yeast's URA3) with mutagenic oligos representative of every possible mispairing under either wild-type conditions, permanent deletion of mutS or transient loss of mutL activity (brought about by the thermoinducible dominant negative allele mutLE36K ). Analysis of single nucleotide mutations borne by clones resistant to fluoroorotic acid (5FOA, the target of wild type PyrF) pinpointed prohibited and tolerated single-nucleotide replacements and exposed a clear grading of mismatch recognition. The resulting data unequivocally established the hierarchy A:G < C:C < G:A < C:A, A:A, G:G, T:T, T:G, A:C, C:T < G:T, T:C as the one prevalent in Pseudomonas putida. This information is vital for enabling recombineering strategies aimed at single-nucleotide changes in this biotechnologically important species.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , DNA de Cadeia Simples/genética , Genes Bacterianos/genética , Pseudomonas putida/genética , Replicação do DNA , Engenharia Genética , Mutagênese , Mutação
15.
Methods Mol Biol ; 2075: 383-398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584177

RESUMO

Recombineering is the use of phage recombination proteins to improve and facilitate bacterial genome engineering. Depending on the nature of the DNA template, double-stranded or single-stranded, the system needs three proteins (Gam, Exo, and Beta) or just one (Beta) to work properly. The use of this technique has been fundamental not only toward solving fundamental biological questions with reverse genetics but also for the generation of deep-engineered E. coli chassis strains. Unfortunately, the use of ssDNA recombineering is still limited to a narrow number of bacterial species. One of the reasons for that is the lack of proper recombinases to be efficiently used in different microorganisms and the lack of proper genetic tools to deliver and express this activity in a controlled way. Here, we describe a protocol to follow a simple workflow to identify, clone, and quantify the function of the selected recombinases in the organism of choice by cloning and expressing them in standardized broad host range plasmids. As an example of the method, we tested the use of the Ssr recombinase in P. putida EM42 by introducing a complete deletion of the target gene pyrF. The example shows how two parameters of the mutagenic oligo, i.e., length and phosphorothioate protection, affect the final outcome of the procedure.


Assuntos
DNA de Cadeia Simples , Bactérias Gram-Negativas/genética , Plasmídeos/genética , Recombinação Genética , Clonagem Molecular , Engenharia Genética , Genoma Bacteriano , Genômica/métodos , Recombinases/genética , Recombinases/metabolismo
16.
Nucleic Acids Res ; 48(D1): D1164-D1170, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31740968

RESUMO

The Standard European Vector Architecture 3.0 database (SEVA-DB 3.0, http://seva.cnb.csic.es) is the update of the platform launched in 2013 both as a web-based resource and as a material repository of formatted genetic tools (mostly plasmids) for analysis, construction and deployment of complex bacterial phenotypes. The period between the first version of SEVA-DB and the present time has witnessed several technical, computational and conceptual advances in genetic/genomic engineering of prokaryotes that have enabled upgrading of the utilities of the updated database. Novelties include not only a more user-friendly web interface and many more plasmid vectors, but also new links of the plasmids to advanced bioinformatic tools. These provide an intuitive visualization of the constructs at stake and a range of virtual manipulations of DNA segments that were not possible before. Finally, the list of canonical SEVA plasmids is available in machine-readable SBOL (Synthetic Biology Open Language) format. This ensures interoperability with other platforms and affords simulations of their behaviour under different in vivo conditions. We argue that the SEVA-DB will remain a useful resource for extending Synthetic Biology approaches towards non-standard bacterial species as well as genetically programming new prokaryotic chassis for a suite of fundamental and biotechnological endeavours.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Engenharia Genética , Vetores Genéticos , Clonagem Molecular , Europa (Continente) , Software , Navegador
17.
APMIS ; 128(3): 220-231, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31709616

RESUMO

Pseudomonas aeruginosa is generally described as ubiquitous in natural settings, such as soil and water. However, because anecdotal observations and published reports have questioned whether or not this description is true, we undertook a rigorous study using three methods to investigate the occurrence of P. aeruginosa: We investigated environmental samples, analyzed 16S rRNA data, and undertook a systematic review and meta-analysis of published data. The environmental sample screening identified P. aeruginosa as significantly associated with hydrocarbon and pesticide-contaminated environments and feces, as compared to uncontaminated environments in which its prevalence was relatively low. The 16S rRNA data analysis showed that P. aeruginosa sequences were present in all habitats but were most abundant in samples from human and animals. Similarly, the meta-analysis revealed that samples obtained from environments with intense human contact had a higher prevalence of P. aeruginosa compared to those with less human contact. Thus, we found a clear tendency of P. aeruginosa to be present in places closely linked with human activity. Although P. aeruginosa may be ubiquitous in nature, it is usually scarce in pristine environments. Thus, we suggest that P. aeruginosa should be described as a bacterium largely found in locations associated with human activity.


Assuntos
Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Animais , Meio Ambiente , Microbiologia Ambiental , Humanos , Infecções por Pseudomonas/microbiologia , RNA Ribossômico 16S/genética
18.
Microb Biotechnol ; 12(5): 1076-1089, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237429

RESUMO

Implementation of single-stranded DNA (ssDNA) recombineering in Pseudomonas putida has widened the range of genetic manipulations applicable to this biotechnologically relevant bacterium. Yet, the relatively low efficiency of the technology hampers identification of mutated clones lacking conspicuous phenotypes. Fortunately, the use of CRISPR/Cas9 as a device for counterselection of wild-type sequences helps to overcome this limitation. Merging ssDNA recombineering with CRISPR/Cas9 thus enables a suite of genomic edits with a straightforward approach: a CRISPR plasmid provides the spacer DNA sequence that directs the Cas9 nuclease ribonucleoprotein complex to cleave the genome at the wild-type sequences that have not undergone the change entered by the mutagenic ssDNA oligonucleotide(s). This protocol describes a complete workflow of the method optimized for P. putida, although it could in principle be applicable to many other pseudomonads. As an example, we show the deletion of the edd gene that encodes one key enzyme that operates the EDEMP cycle for glucose metabolism in P. putida EM42. By combining two incompatible CRISPR plasmids with different antibiotic selection markers, we show that the procedure can be cycled to implement consecutive deletions in the same strain, e.g. deletion of the pyrF gene following that of the edd mutant. This approach adds to the wealth of genetic technologies available for P. putida and strengthens its status as a chassis of choice for a suite of biotechnological applications.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Edição de Genes/métodos , Genética Microbiana/métodos , Pseudomonas putida/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinação Genética
19.
Curr Opin Biotechnol ; 59: 111-121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31048223

RESUMO

Traditional microbial biotechnology is in the midst of a profound transformation brought about not only by many conceptual and technical breakthroughs (e.g. systems and synthetic biology, the CRISPR revolution) but also by the major change of socioeconomic context generically known as the 4th Industrial Revolution. Owing to its naturally evolved properties of stress endurance, metabolic versatility, and physiological robustness the soil bacterium Pseudomonas putida has recently received a considerable attention as the basis for developing whole-cell catalysts. The review below sketches the ongoing journey of this bacterium from being a soil-dweller, root-colonizer microbe all the way to become a programmable catalyst for executing complex biotransformations at very different scales-having in the background the contemporary developments in non-biological programmable chemistry.


Assuntos
Pseudomonas putida , Biotecnologia , Biologia Sintética
20.
Bio Protoc ; 9(10): e3238, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654767

RESUMO

Biofilms are bacterial communities in the shape of exopolysaccharide matrix-encased aggregates attached onto interphases able to resist environmental aggressions. The development of bacteria in the shape of biofilms deeply affects the performance of many industrial processes which work with fluidic systems, where bacteria may settle and prosper. As a consequence industrial equipment experiments low performance issues and substantial maintenance costs. The study of how bacteria of industrial interest such as Pseudomonas putida spread in these fluidic systems is highly dependent on the chosen experimental system to retrieve such data, thus using scaled prototypes becomes an essential step towards the design of a more efficient system to handle biofilms, either to control them or to prevent them. This protocol describes how to assemble, operate and maintain a device to grow and monitor the biofilm spreading pattern of this bacterium (as a function of the fluid hydrodynamics) in a custom-made chamber larger than those typically used in laboratory environments, and how to analyze the information gathered from it in a straightforward fashion. Description of the protocol was thought to be used as a working template not only for the presented case study but for any other potential experiment in different contexts and diverse scales following similar design principles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...