Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 12(12): e11889, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33151035

RESUMO

An open debate in antiangiogenic therapies is about their consequence on tumor invasiveness and metastasis, which is undoubtedly relevant for patients currently treated with antiangiogenics, such as renal cell carcinoma patients. To address, this we developed an extensive series of 27 patient biopsy-derived orthotopic xenograft models (Ren-PDOX) that represent inter-patient heterogeneity. In specific tumors, antiangiogenics produced increased invasiveness and metastatic dissemination, while in others aggressiveness remained unchanged. Mechanistically, species-discriminative RNA sequencing identified a tumor cell-specific differential expression profile associated with tumor progression and aggressivity in TCGA RCC patients. Gene filtering using an invasion-annotated patient series pinpointed two candidate genes, of which ALDH1A3 differentiated the pro-invasive subtype of Ren-PDOXs. Validation in an independent series of 15 antiangiogenic-treated patients confirmed that pre-treatment ALDH1A3 can significantly discriminate patients with pro-aggressive response upon treatment. Overall, results confirm that effects of antiangiogenic drugs on tumor invasion and metastasis are heterogeneous and may profoundly affect the natural progression of tumors and promote malignancy. Furthermore, we identify a specific molecular biomarker that could be used to select patients that better benefit from treatment.


Assuntos
Inibidores da Angiogênese/efeitos adversos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Modelos Biológicos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Res ; 79(20): 5328-5341, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31239269

RESUMO

One of the main consequences of inhibition of neovessel growth and vessel pruning produced by angiogenesis inhibitors is increased intratumor hypoxia. Growing evidence indicates that tumor cells escape from this hypoxic environment to better nourished locations, presenting hypoxia as a positive stimulus for invasion. In particular, anti-VEGF/R therapies produce hypoxia-induced invasion and metastasis in a spontaneous mouse model of pancreatic neuroendocrine cancer (PanNET), RIP1-Tag2. Here, a novel vascular-targeting agent targeting semaphorin 4D (Sema4D) demonstrated impaired tumor growth and extended survival in the RIP1-Tag2 model. Surprisingly, although there was no induction of intratumor hypoxia by anti-Sema4D therapy, the increase in local invasion and distant metastases was comparable with the one produced by VEGFR inhibition. Mechanistically, the antitumor effect was due to an alteration in vascular function by modification of pericyte coverage involving platelet-derived growth factor B. On the other hand, the aggressive phenotype involved a macrophage-derived Sema4D signaling engagement, which induced their recruitment to the tumor invasive fronts and secretion of stromal cell-derived factor 1 (SDF1) that triggered tumor cell invasive behavior via CXCR4. A comprehensive clinical validation of the targets in different stages of PanNETs demonstrated the implication of both Sema4D and CXCR4 in tumor progression. Taken together, we demonstrate beneficial antitumor and prosurvival effects of anti-Sema4D antibody but also unravel a novel mechanism of tumor aggressivity. This mechanism implicates recruitment of Sema4D-positive macrophages to invasive fronts and their secretion of proinvasive molecules that ultimately induce local tumor invasion and distant metastasis in PanNETs. SIGNIFICANCE: An anti-semaphorin-4D vascular targeting agent demonstrates antitumor and prosurvival effects but also unravels a novel promalignant effect involving macrophage-derived SDF1 that promotes tumor invasion and metastasis, both in animal models and patients.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5328/F1.large.jpg.See related commentary by Tamagnone and Franzolin, p. 5146.


Assuntos
Neoplasias , Semaforinas , Animais , Antígenos CD , Humanos , Camundongos , Transdução de Sinais
3.
Nanoscale ; 11(23): 11331-11339, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31166337

RESUMO

Nanomedicine has emerged as a promising strategy to address some of the limitations of traditional biomedical sensing, imaging and therapy modalities. Its applicability and efficacy are, in part, hindered by the difficulty in both controllably delivering nanoparticles to specific regions and accurately monitoring them in tissue. Gold nanoparticles are among the most extensively used inorganic nanoparticles which benefit from high biocompatibility, flexible functionalization, strong and tunable resonant absorption, and production scalability. Moreover, their capability to enhance optical fields at their plasmon resonance enables local boosting of non-linear optical processes, which are otherwise very inefficient. In particular, two-photon induced luminescence (TPL) in gold offers high signal specificity for monitoring gold nanoparticles in a biological environment. In this article, we demonstrate that TPL microscopy provides a robust sub-micron-resolution technique able to quantify accumulated gold nanorods (GNRs) both in cells and in tissues. First, the temporal accumulation of GNRs with two different surface chemistries was measured in 786-O cells during the first 24 hours of incubation, and at different nanoparticle concentrations. Subsequently, GNR accumulation in mice, 6 h and 24 hours after tail vein injection, was quantified by TPL microscopy in biopsied tissue from kidney, spleen, liver and clear cell renal cell carcinoma (ccRCC) tumors, in good agreement with inductively coupled mass spectroscopy. Our data suggest that TPL microscopy stands as a powerful tool to understand and quantify the delivery mechanisms of gold nanoparticles, highly relevant to the development of future theranostic medicines.


Assuntos
Adenocarcinoma de Células Claras , Ouro , Neoplasias Renais , Nanopartículas Metálicas , Neoplasias Experimentais , Adenocarcinoma de Células Claras/diagnóstico por imagem , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Animais , Linhagem Celular , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ressonância de Plasmônio de Superfície , Nanomedicina Teranóstica
4.
Nanoscale ; 11(12): 5595-5606, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30860518

RESUMO

Owing to their unique combination of chemical and physical properties, inorganic nanoparticles show a great deal of potential as suitable agents for early diagnostics and less invasive therapies. Yet, their translation to the clinic has been hindered, in part, by the lack of non-invasive methods to quantify their concentration in vivo while also assessing their effect on the tissue physiology. In this work, we demonstrate that diffuse optical techniques, employing near-infrared light, have the potential to address this need in the case of gold nanoparticles which support localized surface plasmons. An orthoxenograft mouse model of clear cell renal cell carcinoma was non-invasively assessed by diffuse reflectance and correlation spectroscopies before and over several days following a single intravenous tail vein injection of polyethylene glycol-coated gold nanorods (AuNRs-PEG). Our platform enables to resolve the kinetics of the AuNR-PEG uptake by the tumor in quantitative agreement with ex vivo inductively coupled plasma mass spectroscopy. Furthermore, it allows for the simultaneous monitoring of local tissue hemodynamics, enabling us to conclude that AuNRs-PEG do not significantly alter the animal physiology. We note that the penetration depth of this current probe was a few millimeters but can readily be extended to centimeters, hence gaining clinical relevance. This study and the methodology presented here complement the nanomedicine toolbox by providing a flexible platform, extendable to other absorbing agents that can potentially be translated to human trials.


Assuntos
Ouro/química , Hemodinâmica , Nanopartículas Metálicas/química , Animais , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Humanos , Hipertermia Induzida , Raios Infravermelhos , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Nus , Fototerapia , Polietilenoglicóis/química , Transplante Heterólogo
5.
Biomed Opt Express ; 8(5): 2563-2582, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663891

RESUMO

The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.

6.
Cell Rep ; 15(6): 1134-43, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27134180

RESUMO

Antiangiogenic drugs are used clinically for treatment of renal cell carcinoma (RCC) as a standard first-line treatment. Nevertheless, these agents primarily serve to stabilize disease, and resistance eventually develops concomitant with progression. Here, we implicate metabolic symbiosis between tumor cells distal and proximal to remaining vessels as a mechanism of resistance to antiangiogenic therapies in patient-derived RCC orthoxenograft (PDX) models and in clinical samples. This metabolic patterning is regulated by the mTOR pathway, and its inhibition effectively blocks metabolic symbiosis in PDX models. Clinically, patients treated with antiangiogenics consistently present with histologic signatures of metabolic symbiosis that are exacerbated in resistant tumors. Furthermore, the mTOR pathway is also associated in clinical samples, and its inhibition eliminates symbiotic patterning in patient samples. Overall, these data support a mechanism of resistance to antiangiogenics involving metabolic compartmentalization of tumor cells that can be inhibited by mTOR-targeted drugs.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores da Angiogênese/farmacologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Everolimo/farmacologia , Everolimo/uso terapêutico , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Masculino , Camundongos Nus , Fenótipo , Pirróis/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sunitinibe , Serina-Treonina Quinases TOR/metabolismo
7.
Biomed Opt Express ; 7(2): 481-98, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26977357

RESUMO

A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...