Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770358

RESUMO

Two-dimensional colloidal crystals are of considerable fundamental and practical importance. However, their quality is often low due to the widespread presence of domain walls and defects. In this work, we explored the annealing process undergone by monolayers of superparamagnetic colloids adsorbed onto fluid interfaces in the presence of magnetic field pulses. These systems present the extraordinary peculiarity that both the extent and the character of interparticle interactions can be adjusted at will by simply varying the strength and orientation of the applied field so that the application of field pulses results in a sudden input of energy. Specifically, we have studied the effect of polycrystal size, pulse duration, slope and frequency on the efficiency of the annealing process and found that (i) this strategy is only effective when the polycrystal consists of less than approximately 10 domains; (ii) that the pulse duration should be of the order of magnitude of the time required for the outer particles to travel one diameter during the heating step; (iii) that the quality of larger polycrystals can be slightly improved by applying tilted pulses. The experimental results were corroborated by Brownian dynamics simulations.

3.
J Chem Phys ; 156(16): 164502, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490027

RESUMO

In this work, we study a two-dimensional system composed by Active Brownian Particles (ABPs) interacting via a repulsive potential with two length scales-a soft shell and a hard core. Depending on the ratio between the strength of the soft shell barrier and the activity, we find two regimes: If this ratio is much larger or smaller than 1, the observed behavior is comparable with ABPs interacting via a single length scale potential. If this ratio is similar to 1, the two length scales are relevant for both structure and dynamical properties. On the structural side, when the system exhibits a motility induced phase separation, the dense phase is characterized by new and more complex structures compared with the hexatic phase observed in single length scale systems. From the dynamic analysis, we find, to our knowledge, the first manifestation of a dynamic heterogeneity in active particles, reminiscent of the glassy dynamics widely studied in passive colloids.

4.
Adv Colloid Interface Sci ; 302: 102620, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35259565

RESUMO

Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.


Assuntos
Coloides , Coloides/química , Emulsões/química
5.
Small ; 17(25): e2101188, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34018678

RESUMO

Magnetic colloids adsorbed at a fluid interface are unique model systems to understand self-assembly in confined environments, both in equilibrium and out of equilibrium, with important potential applications. In this work the pearl-chain-like self-assembled structures of superparamagnetic colloids confined to a fluid-fluid interface under static and time-dependent actuations are investigated. On the one hand, it is found that the structures generated by static fields transform as the tilt angle of the field with the interface is increased, from 2D crystals to separated pearl-chains in a process that occurs through a controllable and reversible zip-like thermally activated mechanism. On the other hand, the actuation with precessing fields about the axis perpendicular to the interface induces dynamic self-assembled structures with no counterpart in non-confined systems, generated by the interplay of averaged magnetic interactions, interfacial forces, and hydrodynamics. Finally, how these dynamic structures can be used as remotely activated roller conveyors, able to transport passive colloidal cargos at fluid interfaces and generate parallel viscous flows is shown. The latter can be used in the mixture of adsorbed molecules and the acceleration of surface-chemical reactions, overcoming diffusion limitations.

6.
J Colloid Interface Sci ; 560: 388-397, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31672244

RESUMO

HYPOTHESIS: Field induced assembling/disassembling of paramagnetic colloids is strongly influenced by the configuration of the applied field, the surface chemistry of the particles, the nearby presence of an external boundary or the particle density. The trapping of the particles at fluid-fluid interface is expected to promote different assembling/disassembling routes together with new approaches for controlled manipulation of self-assembled structures and the fabrication of new functional patterned surfaces. EXPERIMENTS: We study the reversible disassembly itineraries that emerge in linear aggregates of micrometer-sized magnetic particles adsorbed onto a fluid interface when the applied field is abruptly tilted out of the confining surface: the unzipping of chains laterally aggregated, the partial fragmentation of the chains, the gradual separation of the monomers and the abrupt colloidal explosion. FINDINGS: By combining experiments, simulations and theoretical arguments, we elucidate different dissociation mechanisms strongly influenced by subtle changes in the orientation of the applied field, the particle's position relative to the confining interface and the mutual induction of the particles. Moreover, we show that the understanding of the mechanisms can be applied to pinpoint exactly particle detachments in two-dimensional binary mixtures.

7.
Sci Adv ; 4(1): eaap9379, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29387795

RESUMO

Hydrodynamic interactions (HIs), namely, solvent-mediated long-range interactions between dispersed particles, play a crucial role in the assembly and dynamics of many active systems, from swimming bacteria to swarms of propelling microrobots. We experimentally demonstrate the emergence of long-living hydrodynamic bound states between model microswimmers at low Reynolds numbers. A rotating magnetic field forces colloidal hematite microparticles to translate at a constant and frequency-tunable speed close to a bounding plane in a viscous fluid. At high driving frequency, HIs dominate over magnetic dipolar ones, and close propelling particles couple into bound states by adjusting their translational speed to optimize the transport of the pair. The physical system is described by considering the HIs with the boundary surface and the effect of gravity, providing an excellent agreement with the experimental data for all the range of parameters explored. Moreover, we show that in dense suspensions, these bound states can be extended to one-dimensional arrays of particles assembled by the sole HIs. Our results manifest the importance of the boundary surface in the interaction and dynamics of confined propelling microswimmers.

8.
Small ; 13(18)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28296018

RESUMO

The realization of micromotors able to dock and transport microscopic objects in a fluid medium has direct applications toward the delivery of drugs and chemicals in small channels and pores, and the realization of functional wireless microrobots in lab-on-a-chip technology. A simple and general method to tow microscopic particles in water by using remotely controllable light-activated hematite microdockers is demonstrated. These anisotropic ferromagnetic particles can be synthesized in bulk and present the remarkable ability to be activated by light while independently manipulated via external fields. The photoactivation process induces a phoretic flow capable to attract cargos toward the surface of the propellers, while a rotating magnetic field is used to transport the composite particles to any location of the experimental platform. The method allows the assembling of small colloidal clusters of various sizes, composed by a skeleton of mobile magnetic dockers, which cooperatively keep, transport, and release the microscopic cargos. The possibility to easily reconfigure in situ the location of the docker above the cargo is demonstrated, which enables optimize transport and cargo release operations.

9.
Phys Rev E ; 96(1-1): 012607, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347116

RESUMO

We combine experiments and theory to investigate the dynamics and orientational fluctuations of ferromagnetic microellipsoids that form a ribbonlike structure due to attractive dipolar forces. When assembled in the ribbon, the ellipsoids display orientational thermal fluctuations with an amplitude that can be controlled via application of an in-plane magnetic field. We use video microscopy to investigate the orientational dynamics in real time and space. Theoretical arguments are used to derive an analytical expression that describes how the distribution of the different angular configurations depends on the strength of the applied field. The experimental data are in good agreement with the developed model for all the range of field parameters explored. Understanding the role of fluctuations in chains composed of dipolar particles is important not only from a fundamental point of view, but it may also help understanding the stability of such structures against thermal noise, which is relevant in microfluidics and laboratory-on-a-chip applications.

10.
Phys Chem Chem Phys ; 18(38): 26353-26357, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711599

RESUMO

We demonstrate a size sensitive experimental scheme which enables bidirectional transport and fractionation of paramagnetic colloids in a fluid medium. It is shown that two types of magnetic colloidal particles with different sizes can be simultaneously transported in opposite directions, when deposited above a stripe-patterned ferrite garnet film subjected to a square-wave magnetic modulation. Due to their different sizes, the particles are located at distinct elevations above the surface, and they experience two different energy landscapes, generated by the modulated magnetic substrate. By combining theoretical arguments and numerical simulations, we reveal such energy landscapes, which fully explain the bidirectional transport mechanism. The proposed technique does not require pre-imposed channel geometries such as in conventional microfluidics or lab-on-a-chip systems, and permits remote control over the particle motion, speed and trajectory, by using relatively low intense magnetic fields.

11.
Soft Matter ; 12(16): 3688-95, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26936015

RESUMO

We combine experiments and theory to investigate the orientational dynamics of dipolar ellipsoids, which self-assemble into elongated ribbon-like structures due to the presence of a permanent magnetic moment, perpendicular to the long axis in each particle. Monodisperse hematite ellipsoids are synthesized via the sol-gel technique and arrange into ribbons in the presence of static or time-dependent magnetic fields. We find that under an oscillating field, the ribbons reorient perpendicular to the field direction, in contrast with the behaviour observed under a static field. This observation is explained theoretically by treating a chain of interacting ellipsoids as a single particle with orientational and demagnetizing field energy. The model allows us to describe the orientational behaviour of the chain and captures well its dynamics at different strengths of the actuating field. The understanding of the complex dynamics and assembly of anisotropic magnetic colloids is a necessary step for controlling the structure formation, which has direct applications in different fluid-based microscale technologies.

12.
Sci Rep ; 6: 19932, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837286

RESUMO

The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be found in a broad range of physical and biological disciplines. Here we report the direct experimental observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the latter propelled above a traveling wave potential generated by a structured magnetic substrate. We develop a rigorously reduced theoretical framework and describe the dynamics of the system in terms of a generalized one-dimensional dissipative Frenkel-Kontorova model. The front dynamics is explored in a wide range of field parameters close to and far from depinning, where the discrete and continuum limits apply. We show how symmetry breaking and finite size of chains are used to control the direction of front propagation, a universal feature relevant to different systems and important for real applications.

13.
Phys Rev Lett ; 115(13): 138301, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451584

RESUMO

We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters.

14.
Lab Chip ; 15(7): 1765-71, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25685897

RESUMO

Colloidal inclusions in lab-on-a-chip devices can be used to perform analytic operations in a non-invasive fashion. We demonstrate here a novel approach to realize fast and reversible micro-sieving operations by manipulating and transporting colloidal chains via mobile domain walls in a magnetic structured substrate. We show that this technique allows one to precisely move and sieve non-magnetic particles, to tweeze microscopic cargos or to mechanically compress highly dense colloidal monolayers.


Assuntos
Coloides/química , Dispositivos Lab-On-A-Chip , Imãs , Técnicas Analíticas Microfluídicas/instrumentação
15.
Adv Colloid Interface Sci ; 206: 303-19, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24200090

RESUMO

We review the dynamics of particle laden interfaces, both particle monolayers and particle+surfactant monolayers. We also discuss the use of the Brownian motion of microparticles trapped at fluid interfaces for measuring the shear rheology of surfactant and polymer monolayers. We describe the basic concepts of interfacial rheology and the different experimental methods for measuring both dilational and shear surface complex moduli over a broad range of frequencies, with emphasis in the micro-rheology methods. In the case of particles trapped at interfaces the calculation of the diffusion coefficient from the Brownian trajectories of the particles is calculated as a function of particle surface concentration. We describe in detail the calculation in the case of subdiffusive particle dynamics. A comprehensive review of dilational and shear rheology of particle monolayers and particle+surfactant monolayers is presented. Finally the advantages and current open problems of the use of the Brownian motion of microparticles for calculating the shear complex modulus of monolayers are described in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...