Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 54(24): 2986-2989, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29505052

RESUMO

We present here the first example of C(sp3)-H activation directed by a sulfur atom. Based on this transformation catalyzed by Ru/C, we have developed a hydrogen isotope exchange reaction for the deuterium and tritium labelling of thioether substructures in complex molecules.

2.
Chemistry ; 21(48): 17495-502, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26481587

RESUMO

Ru nanoparticles (RuNPs) stabilized by non-isolable chiral N-heterocyclic carbenes (NHCs), namely SIDPhNp ((4S,5S)-1,3-di(naphthalen-1-yl)-4,5-diphenylimidazolidine) and SIPhOH ((S)-3-((1S,2R)-2-hydroxy-1,2-diphenylethyl)-1-((R)-2-hydroxy-1,2-diphenylethyl)-4,5-dihydro-3H-imidazoline), have been synthesized through a new procedure that does not require isolation of the free carbenes. The obtained RuNPs have been characterized by state-of-the-art techniques and their surface chemistry has been investigated by FTIR and solid-state MAS NMR upon the coordination of CO, which indicated the presence of free and reactive Ru sites. Their catalytic activity has been tested in various hydrogenation reactions involving competition between different sites, whereby interesting differences in selectivity were observed, but no enantioselectivity.

3.
Angew Chem Int Ed Engl ; 54(36): 10474-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26371960

RESUMO

The activation of C-H bonds has revolutionized modern synthetic chemistry. However, no general strategy for enantiospecific C-H activation has been developed to date. We herein report an enantiospecific C-H activation reaction followed by deuterium incorporation at stereogenic centers. Mechanistic studies suggest that the selectivity for the α-position of the directing heteroatom results from a four-membered dimetallacycle as the key intermediate. This work paves the way to novel molecular chemistry on nanoparticles.

4.
Dalton Trans ; (33): 6626-33, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19672507

RESUMO

Palladium(I) carbonyl carboxylate complexes [Pd(mu-CO)(mu-RCO2)](n) (R = Me, n = 4; R = CMe(3), n = 6) and the corresponding palladium(II) carboxylates (acetate and pivalate) catalyze the cyclopropanation of olefins with ethyl diazoacetate. The performance of these catalysts is similar in terms of selectivity and cyclopropane yields, regardless of the oxidation state of the metal center. However the rates of the cyclopropanation reactions are significantly higher for the acetate based catalysts than for the pivalate derivatives, which suggests that the main catalytic species are carboxylate containing palladium complexes. Kinetic measurements show that reaction rates are independent of the olefin concentration when these are 1-hexene or styrene, but norbornene exerts an inhibitory effect. In spite of this, competition experiments indicate that the cyclopropanation of styrene is 2.2 times as favorable as that of 1-hexene for any of the four catalysts. These observations indicate that while the rate-determining formation of the intermediate palladium carbenoid species is controlled by the catalyst structure, this is followed by a rapid and less specific cyclopropanation step that is not affected by the nature of the carboxylate groups present in the catalyst. An independent test using a 1:1 benzene/cyclohexane mixture of solvents showed that the transfer of ethoxycarbonylcarbene (:C(CO2Et)H) to these molecules is unselective (relative rate of benzene/cyclohexane functionalization approximately 1.8, independent of the catalyst). This result can be interpreted as an indication of the involvement of free ethoxycarbonylcarbene in the carbene transfer step.


Assuntos
Alcenos/química , Compostos de Diazônio/química , Paládio/química , Catálise , Metano/análogos & derivados , Metano/química , Estireno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...