Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 173(9): 1541-55, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26856544

RESUMO

BACKGROUND AND PURPOSE: Prostanoids derived from COX-2 and EP receptors are involved in vascular remodelling in different cardiovascular pathologies. This study evaluates the contribution of COX-2 and EP1 receptors to vascular remodelling and function in hypertension. EXPERIMENTAL APPROACH: Spontaneously hypertensive rats (SHR) and angiotensin II (AngII)-infused (1.44 mg · kg(-1) · day(-1), 2 weeks) mice were treated with the COX-2 inhibitor celecoxib (25 mg · kg(-1) · day(-1) i.p) or with the EP1 receptor antagonist SC19220 (10 mg · kg(-1) · day(-1) i.p.). COX-2(-/-) mice with or without AngII infusion were also used. KEY RESULTS: Celecoxib and SC19220 treatment did not modify the altered lumen diameter and wall : lumen ratio in mesenteric resistance arteries from SHR-infused and/or AngII-infused animals. However, both treatments and COX-2 deficiency decreased the augmented vascular stiffness in vessels from hypertensive animals. This was accompanied by diminished vascular collagen deposition, normalization of altered elastin structure and decreased connective tissue growth factor and plasminogen activator inhibitor-1 gene expression. COX-2 deficiency and SC19220 treatment diminished the increased vasoconstrictor responses and endothelial dysfunction induced by AngII infusion. Hypertensive animals showed increased mPGES-1 expression and PGE2 production in vascular tissue, normalized by celecoxib. Celecoxib treatment also decreased AngII-induced macrophage infiltration and TNF-α expression. Macrophage conditioned media (MCM) increased COX-2 and collagen type I expression in vascular smooth muscle cells; the latter was reduced by celecoxib treatment. CONCLUSIONS AND IMPLICATIONS: COX-2 and EP1 receptors participate in the increased extracellular matrix deposition and vascular stiffness, the impaired vascular function and inflammation in hypertension. Targeting PGE2 receptors might have benefits in hypertension-associated vascular damage.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Ácido Dibenzo(b,f)(1,4)oxazepina-10(11H)-carboxílico, 8-cloro-, 2-acetilidrazida/farmacologia , Dinoprostona/metabolismo , Hipertensão/tratamento farmacológico , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Rigidez Vascular/efeitos dos fármacos , Animais , Celecoxib/administração & dosagem , Celecoxib/química , Celecoxib/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/deficiência , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ácido Dibenzo(b,f)(1,4)oxazepina-10(11H)-carboxílico, 8-cloro-, 2-acetilidrazida/administração & dosagem , Ácido Dibenzo(b,f)(1,4)oxazepina-10(11H)-carboxílico, 8-cloro-, 2-acetilidrazida/química , Relação Dose-Resposta a Droga , Humanos , Hipertensão/metabolismo , Masculino , Camundongos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Relação Estrutura-Atividade
2.
Br J Pharmacol ; 172(12): 3028-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25653183

RESUMO

BACKGROUND AND PURPOSE: Angiotensin II (AngII) and IL-1ß are involved in cardiovascular diseases through the induction of inflammatory pathways. HuR is an adenylate- and uridylate-rich element (ARE)-binding protein involved in the mRNA stabilization of many genes. This study investigated the contribution of HuR to the increased expression of COX-2 induced by AngII and IL-1ß and its consequences on VSMC migration and remodelling. EXPERIMENTAL APPROACH: Rat and human VSMCs were stimulated with AngII (0.1 µM) and/or IL-1ß (10 ng · mL(-1)). Mice were infused with AngII or subjected to carotid artery ligation. mRNA and protein levels were assayed by quantitative PCR, Western blot, immunohistochemistry and immunofluorescence. Cell migration was measured by wound healing and transwell assays. KEY RESULTS: In VSMCs, AngII potentiated COX-2 and tenascin-C expressions and cell migration induced by IL-1ß. This effect of AngII on IL-1ß-induced COX-2 expression was accompanied by increased COX-2 3' untranslated region reporter activity and mRNA stability, mediated through cytoplasmic HuR translocation and COX-2 mRNA binding. These effects were blocked by ERK1/2 and HuR inhibitors. VSMC migration was reduced by blockade of ERK1/2, HuR, COX-2, TXAS, TP and EP receptors. HuR, COX-2, mPGES-1 and TXAS expressions were increased in AngII-infused mouse aortas and in carotid-ligated arteries. AngII-induced tenascin-C expression and vascular remodelling were abolished by celecoxib and by mPGES-1 deletion. CONCLUSIONS AND IMPLICATIONS: The synergistic induction of COX-2 by AngII and IL-1ß in VSMCs involves HuR through an ERK1/2-dependent mechanism. The HuR/COX-2 axis participates in cell migration and vascular damage. HuR might be a novel target to modulate vascular remodelling.


Assuntos
Angiotensina II/metabolismo , Ciclo-Oxigenase 2/genética , Proteína Semelhante a ELAV 1/metabolismo , Interleucina-1beta/metabolismo , Angiotensina II/administração & dosagem , Animais , Aorta/metabolismo , Celecoxib/farmacologia , Movimento Celular/fisiologia , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tenascina/genética , Remodelação Vascular/efeitos dos fármacos
3.
Br J Pharmacol ; 172(12): 3159-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25712370

RESUMO

BACKGROUND AND PURPOSE: Toll-like receptor 4 (TLR4) signalling contributes to inflammatory cardiovascular diseases, but its role in hypertension and the associated vascular damage is not known. We investigated whether TLR4 activation contributed to angiotensin II (AngII)-induced hypertension and the associated vascular structural, mechanical and functional alterations. EXPERIMENTAL APPROACH: AngII was infused (1.44 mg · kg(-1) · day(-1), s.c.) for 2 weeks in C57BL6 mice, treated with a neutralizing anti-TLR4 antibody or IgG (1 µg · day(-1); systolic BP (SBP) and aortic cytokine levels were measured. Structural, mechanical and contractile properties of aortic and mesenteric arterial segments were measured with myography and histology. RT-PCR and Western blotting were used to analyse these tissues and cultured vascular smooth muscle cells (VSMC) from hypertensive rats (SHR). KEY RESULTS: Aortic TLR4 mRNA levels were raised by AngII infusion. Anti-TLR4 antibody treatment of AngII-treated mice normalised: (i) increased SBP and TNF-α, IL-6 and CCL2 levels; (ii) vascular structural and mechanical changes; (iii) altered aortic phenylephrine- and ACh-induced responses; (iv) increased NOX-1 mRNA levels, superoxide anion production and NAD(P)H oxidase activity and effects of catalase, apocynin, ML-171 and Mito-TEMPO on vascular responses; and (v) reduced NO release and effects of L-NAME on phenylephrine-induced contraction. In VSMC, the MyD88 inhibitor ST-2825 reduced AngII-induced NAD(P)H oxidase activity. The TLR4 inhibitor CLI-095 reduced AngII-induced increased phospho-JNK1/2 and p65 NF-κB subunit nuclear protein expression. CONCLUSIONS AND IMPLICATIONS: TLR4 up-regulation by AngII contributed to the inflammation, endothelial dysfunction, vascular remodelling and stiffness associated with hypertension by mechanisms involving oxidative stress. MyD88-dependent activation and JNK/NF-κB signalling pathways participated in these alterations.


Assuntos
Angiotensina II/administração & dosagem , Hipertensão/fisiopatologia , Receptor 4 Toll-Like/metabolismo , Remodelação Vascular/fisiologia , Animais , Aorta/metabolismo , Pressão Sanguínea , Endotélio Vascular/patologia , Hipertensão/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos SHR , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/genética , Regulação para Cima
4.
Br J Pharmacol ; 165(4): 937-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21806604

RESUMO

BACKGROUND AND PURPOSE: Endothelin-1 (ET-1) plays an important role in the maintenance of vascular tone. We aimed to evaluate the influence of superior mesenteric artery (SMA) ischaemia-reperfusion (I/R) on mesenteric resistance artery vasomotor function and the mechanism involved in the changes in vascular responses to ET-1. EXPERIMENTAL APPROACH: SMA from male Sprague-Dawley rats was occluded (90 min) and following reperfusion (24h), mesenteric resistance arteries were dissected. Vascular reactivity was studied using wire myography. Protein and mRNA expression, superoxide anion (O(2) (•-) ) production and ET-1 plasma concentration were evaluated by immunofluorescence, real-time quantitative PCR, ethidium fluorescence and elisa, respectively. KEY RESULTS: I/R increased ET-1 plasma concentration, ET-1-mediated vasoconstriction and ET(B) mRNA expression, and down-regulated ET(A) mRNA expression. Immunofluorescence confirmed mRNA results and revealed an increase in ET(B) receptors in the mesenteric resistance artery media layer after I/R. Therefore, the ET(B) receptor agonist sarafotoxin-6 induced a contraction that was inhibited by the ET(B) receptor antagonist BQ788 only in vessels, with and without endothelium, from I/R rats. Furthermore, BQ788 potentiated ET-1 vasoconstriction only in sham rats. Endothelium removal in rings from I/R rats unmasked the inhibition of ET-1 vasoconstriction by BQ788. Endothelium removal, N(ω) -nitro-L-arginine methyl ester and superoxide dismutase abolished the differences in ET-1 vasoconstriction between sham and I/R rats. We also found that I/R down-regulates endothelial NOS mRNA expression and concomitantly enhanced O(2) (•-) production by increasing NADPH oxidase 1 (NOX-1) and p(47phox) mRNA. CONCLUSIONS AND IMPLICATIONS: Mesenteric I/R potentiated the ET-1-mediated vasoconstriction by a mechanism that involves up-regulation of muscular ET(B) receptors and decrease in NO bioavailability.


Assuntos
Endotelina-1/fisiologia , Isquemia/fisiopatologia , Artérias Mesentéricas/fisiologia , Reperfusão , Vasoconstrição/fisiologia , Acetilcolina/farmacologia , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Endotelina-1/sangue , Sequestradores de Radicais Livres/farmacologia , Técnicas In Vitro , Indometacina/farmacologia , Masculino , Miócitos de Músculo Liso/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/fisiologia , Superóxido Dismutase/farmacologia , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...