Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298122

RESUMO

In this article, the interpolation of daily data of global solar irradiation, and the maximum, average, and minimum temperatures were measured. These measurements were carried out in the agrometeorological stations belonging to the Agro-climatic Information System for Irrigation (SIAR, in Spanish) of the Region of Castilla and León, in Spain, through the concept of Virtual Weather Station (VWS), which is implemented with Artificial Neural Networks (ANNs). This is serving to estimate data in every point of the territory, according to their geographic coordinates (i.e., longitude and latitude). The ANNs of the Multilayer Feed-Forward Perceptron (MLP) used are daily trained, along with data recorded in 53 agro-meteorological stations, and where the validation of the results is conducted in the station of Tordesillas (Valladolid). The ANN models for daily interpolation were tested with one, two, three, and four neurons in the hidden layer, over a period of 15 days (from 1 to 15 June 2020), with a root mean square error (RMSE, MJ/m2) of 1.23, 1.38, 1.31, and 1.04, respectively, regarding the daily global solar irradiation. The interpolation of ambient temperature also performed well when applying the VWS concept, with an RMSE (°C) of 0.68 for the maximum temperature with an ANN of four hidden neurons, 0.58 for the average temperature with three hidden neurons, and 0.83 for the minimum temperature with four hidden neurons.


Assuntos
Redes Neurais de Computação , Tempo (Meteorologia) , Temperatura , Espanha , Meteorologia
2.
Sensors (Basel) ; 22(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808346

RESUMO

This study evaluates the predictive modeling of the daily ambient temperature (maximum, Tmax; average, Tave; and minimum, Tmin) and its hourly estimation (T0h, …, T23h) using artificial neural networks (ANNs) for agricultural applications. The data, 2004-2010, were used for training and 2011 for validation, recorded at the SIAR agrometeorological station of Mansilla Mayor (León). ANN models for daily prediction have three neurons in the output layer (Tmax(t + 1), Tave(t + 1), Tmin(t + 1)). Two models were evaluated: (1) with three entries (Tmax(t), Tave(t), Tmin(t)), and (2) adding the day of the year (J(t)). The inclusion of J(t) improves the predictions, with an RMSE for Tmax = 2.56, Tave = 1.65 and Tmin = 2.09 (°C), achieving better results than the classical statistical methods (typical year Tave = 3.64 °C; weighted moving mean Tmax = 2.76, Tave = 1.81 and Tmin = 2.52 (°C); linear regression Tave = 1.85 °C; and Fourier Tmax = 3.75, Tave = 2.67 and Tmin = 3.34 (°C)) for one year. The ANN models for hourly estimation have 24 neurons in the output layer (T0h(t), …, T23h(t)) corresponding to the mean hourly temperature. In this case, the inclusion of the day of the year (J(t)) does not significantly improve the estimations, with an RMSE = 1.25 °C, but it improves the results of the ASHRAE method, which obtains an RMSE = 2.36 °C for one week. The results obtained, with lower prediction errors than those achieved with the classical methods, confirm the interest in using the ANN models for predicting temperatures in agricultural applications.


Assuntos
Redes Neurais de Computação , Estações do Ano , Espanha , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...