Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1224096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520351

RESUMO

Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.

2.
J Fungi (Basel) ; 8(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35330233

RESUMO

Ambrosia beetles are insect vectors of important plant diseases and have been considered as a threat to forest ecosystems, agriculture, and the timber industry. Several factors have been suggested as promoters of the pathogenic behavior of ambrosia beetles; one of them is the nature of the fungal mutualist and its ability to establish an infectious process. In Mexico, Xylosandrus morigerus is an invasive ambrosia beetle that damages many agroecosystems. Herein, two different isolates from the X. morigerus ambrosia beetle belonging to the Fusarium genus are reported. Both isolates belong to the Fusarium solani species complex (FSSC) but not to the Ambrosia Fusarium clade (AFC). The two closely related Fusarium isolates are pathogenic to different forest and agronomic species, and the morphological differences between them and the extracellular protease profile suggest intraspecific variability. This study shows the importance of considering these beetles as vectors of different species of fungal plant pathogens, with some of them even being phylogenetically closely related and having different pathogenic abilities, highlighting the relevance of the fungal mutualist as a factor for the ambrosia complex becoming a pest.

3.
Chemistry ; 26(11): 2509-2515, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31916634

RESUMO

The Cu-catalyzed reaction of substituted α-diazoesters with fluoride gives α-fluoroesters with ee values of up to 95 %, provided that chiral indane-derived bis(oxazoline) ligands are used that carry bulky benzyl substituents at the bridge and moderately bulky isopropyl groups on their core. The apparently homogeneous solution of CsF in C6 F6 /hexafluoroisopropanol (HFIP) is the best reaction medium, but CsF in the biphasic mixture CH2 Cl2 /HFIP also provides good results. DFT studies suggest that fluoride initially attacks the Cu- rather than the C-atom of the transient donor/acceptor carbene intermediate. This unusual step is followed by 1,2-fluoride shift; for this migratory insertion to occur, the carbene must rotate about the Cu-C bond to ensure orbital overlap. The directionality of this rotatory movement within the C2 -symmetric binding site determines the sense of induction. This model is in excellent accord with the absolute configuration of the resulting product as determined by X-ray diffraction using single crystals of this a priori wax-like material grown by capillary crystallization.

4.
ChemSusChem ; 10(9): 1969-1975, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28378941

RESUMO

Catalytic ring-opening of bio-sourced non-strained lactones with aromatic amines can offer a straightforward, 100 % atom-economical, and sustainable pathway towards relevant N-aryl amide scaffolds. Herein, the first general, metal-free, and highly efficient N-aryl amide formation is reported from poorly reactive aromatic amines and non-strained lactones under mild operating conditions using an organic bicyclic guanidine catalyst. This protocol has high application potential as exemplified by the formal syntheses of drug-relevant molecules.


Assuntos
Lactonas/química , Amidas/síntese química , Aminas , Catálise , Guanidina
5.
J Am Chem Soc ; 138(43): 14194-14197, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27759371

RESUMO

The first asymmetric synthesis of α,α-disubstituted allylic N-arylamines based on a palladium-catalyzed allylic amination has been developed. The protocol uses highly modular vinyl cyclic carbonates and unactivated aromatic amine nucleophiles as substrates. The catalytic process features minimal waste production, ample scope in reaction partners, high asymmetric induction up to 97% ee, and operational simplicity.

7.
J Am Chem Soc ; 138(36): 11970-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27551931

RESUMO

Significant progress has been observed in recent years in the synthesis of allylic amines, which are important building blocks in synthetic chemistry. Most of these processes are effective toward the preparation of allylic amines, with limited potential to introduce three or four different substituents on the olefinic unit in a stereocontrolled fashion. Therefore, the discovery of a mild and operationally simple protocol allowing such challenging stereoselective synthesis of multisubstituted allylic amines remains an inspiring target. Herein, we report the first general and practical methodology for the stereoselective synthesis of tri- and tetrasubstituted allylic amines based on Pd-catalyzed conversion of allyl surrogates readily obtained from cyclic vinyl carbonates. These rare conversions are characterized by excellent stereoselectivity, operational simplicity, mild reaction conditions, and wide scope in reaction partners. DFT studies were performed to rationalize the stereocontrol in these allylic amine formation reactions, and evidence is provided that the formation of a six-membered palladacyclic intermediate leads toward the formation of (Z)-configured allylic amine products.

8.
Angew Chem Int Ed Engl ; 55(37): 11037-40, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527353

RESUMO

The first general catalytic and highly stereoselective formation of (Z)-1,4-but-2-ene diols is described from readily available and modular vinyl-substituted cyclic carbonate precursors using water as a nucleophilic reagent. These 1,4-diol scaffolds can be generally prepared in high yields and with ample scope in reaction partners using a simple synthetic method that does not require the presence of any additive or any special precaution unlike the stoichiometric approaches reported to date. Control experiments support the mechanistic view that hyperconjugation within the catalytic intermediate after decarboxylation plays an imperative role to control the stereoselective outcome of these reactions.

9.
ChemSusChem ; 9(7): 749-55, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26914250

RESUMO

A variety of cavitand-based polyphenols was prepared from cheap and accessible aldehyde and resorcinol/pyrogallol reagents to give the respective resorcin[4]- or pyrogallol[4]arenes. The preorganization of the phenolic units allows intra- and intermolecular hydrogen bond (HB) networks that affect both the reactivity and stability of these HB-donor catalysts. Unexpectedly, we found that the resorcin[4]arenes show cooperative catalysis behavior compared to the parent resorcinol in the catalytic coupling of epoxides and CO2 with a significantly higher turnover. At elevated reaction temperatures, the resorcin[4]arene-based catalyst 3 d displays the best catalytic performance with very high turnover numbers and frequencies, combining increased reactivity and stability compared to pyrogallol, and an ample substrate scope. This type of polyphenol structure thus illustrates the importance of a new, highly competitive organocatalyst design to devise sustainable CO2 conversion processes.


Assuntos
Dióxido de Carbono/química , Compostos de Epóxi/química , Éteres Cíclicos/química , Polifenóis/química , Resorcinóis/química , Catálise
10.
J Biol Chem ; 290(32): 19710-25, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088142

RESUMO

Aminoacyl-tRNA synthetases (aaRS) catalyze both chemical steps that translate the universal genetic code. Rodin and Ohno offered an explanation for the existence of two aaRS classes, observing that codons for the most highly conserved Class I active-site residues are anticodons for corresponding Class II active-site residues. They proposed that the two classes arose simultaneously, by translation of opposite strands from the same gene. We have characterized wild-type 46-residue peptides containing ATP-binding sites of Class I and II synthetases and those coded by a gene designed by Rosetta to encode the corresponding peptides on opposite strands. Catalysis by WT and designed peptides is saturable, and the designed peptides are sensitive to active-site residue mutation. All have comparable apparent second-order rate constants 2.9-7.0E-3 M(-1) s(-1) or ∼750,000-1,300,000 times the uncatalyzed rate. The activities of the two complementary peptides demonstrate that the unique information in a gene can have two functional interpretations, one from each complementary strand. The peptides contain phylogenetic signatures of longer, more sophisticated catalysts we call Urzymes and are short enough to bridge the gap between them and simpler uncoded peptides. Thus, they directly substantiate the sense/antisense coding ancestry of Class I and II aaRS. Furthermore, designed 46-mers achieve similar catalytic proficiency to wild-type 46-mers by significant increases in both kcat and Km values, supporting suggestions that the earliest peptide catalysts activated ATP for biosynthetic purposes.


Assuntos
Trifosfato de Adenosina/química , Aminoacil-tRNA Sintetases/química , Códon/química , Código Genético , Peptídeos/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Biocatálise , Domínio Catalítico , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Cinética , Dados de Sequência Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Chemistry ; 21(19): 7144-50, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25807915

RESUMO

A calix[4]arene host equipped with two bis-[Zn(salphen)] complexes self-assembles into a capsular complex in the presence of a chiral diamine guest with an unexpected 2:1 ratio between the host and the guest. Effective chirality transfer from the diamine to the calix-salen hybrid host is observed by circular dichroism (CD) spectroscopy, and a high stability constant K2,1 of 1.59×10(11) M(-2) for the assembled host-guest ensemble has been determined with a substantial cooperativity factor α of 6.4. Density functional calculations are used to investigate the origin of the stability of the host-guest system and the experimental CD spectrum compared with those calculated for both possible diastereoisomers showing that the M,M isomer is the one that is preferentially formed. The current system holds promise for the chirality determination of diamines, as evidenced by the investigated substrate scope and the linear relationship between the ee of the diamine and the amplitude of the observed Cotton effects.


Assuntos
Calixarenos/química , Complexos de Coordenação/química , Diaminas/química , Fenóis/química , Fenilenodiaminas/química , Zinco/química , Modelos Moleculares
12.
Dalton Trans ; 41(23): 6998-7004, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22543525

RESUMO

The ring-chain tautomerism of 2-(3-tosyl-1,2,3,4-tetrahydroquinazolin-2-yl)quinolin-8-ol (H(2)L(ring)) has been exploited to produce mononuclear complexes or, alternatively, dinuclear complexes, as desired, by varying the stoichiometry of the ligand. Cu(2+) and Zn(2+) stabilise the ring tautomeric form of the ligand in their mononuclear complexes M(HL(ring))(2). The structural characterisation of Zn(HL(ring))(2)·2MeOH·0.5H(2)O shows O,N-donor behaviour of the ring tautomer. The 1,2,3,4-tetrahydroquinazoline undergoes a ring-opening reaction upon formation of phenoxo-bridged dinuclear complexes M(2)(L(chain))(2) in which the chain tautomer is acting as O,N,N,N-donor. The crystal structure of Cu(2)(L(amide))(L(quinazoline))(MeOH)·2MeOH evidenced the sensitivity of H(2)L(ring) to the copper-mediated aerobic oxidation, which results in two derivatives of the ligand, a quinazoline and an amide. The quinazoline ligand is acting as monoanionic and mononucleating through its O,N,N binding site, while the amide ligand behaves as a trianionic and binucleating through its O,N,N,N and O,O binding sites in Cu(2)(L(amide))(L(quinazoline))(MeOH)·2MeOH.


Assuntos
Cobre/química , Compostos Organometálicos/química , Quinazolinas/química , Zinco/química , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Molecular , Análise Espectral
13.
Inorg Chem ; 51(3): 1278-93, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22268570

RESUMO

The ring-chain tautomerism of a 2-aryl-1,2,3,4-tetrahydroquinazoline has been exploited to induce reversible changes in the aminal-imine equilibrium, as desired, by coordination of a suitable metal ion. This process was studied by NMR and UV-vis spectroscopies, X-ray crystallography, and molecular modeling approach. The results obtained show that the imine H(2)L(i) undergoes a selective ring-closing reaction upon complexation with Ni(2+). As a result, complexes of the type Ni(HL(a))(2) are obtained, whose chirality arises from the chiral ligand H(2)L(a) and the helicity of the structure. Hence, helical enantiomers form the following racemates: [Δ-C(R,R)N(S,S),Λ-C(S,S)N(R,R)]-Ni(HL(a))(2)·2HOAc and [Δ,Λ-C(S,R)N(R,S)]-Ni(HL(a))(2)·4MeOH. In contrast to the situation observed for Ni(2+), the cyclic tautomer of the ligand, H(2)L(a), undergoes a selective ring-opening reaction upon complex formation with Pd(2+), ultimately yielding Pd(HL(i))(2)·MeOH, in which the open-chain imine ligand is bidentate through the N,O donor set of the quinoline residue. Density functional theory calculations were conducted to provide insight into the different behavior of both coordinated metals (Ni(2+) and Pd(2+)) and to propose a mechanism for the metal-assisted opening/closing reaction of the tetrahydroquinazoline ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...