Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723516

RESUMO

Fluorescent probes are a powerful tool for imaging amyloid ß (Aß) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aß fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aß- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aß fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aß1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aß plaques. The intermolecular interactions of fluorophores with Aß were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aß1-42 in cerebrospinal fluid or blood.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Corantes Fluorescentes , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Corantes Fluorescentes/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microscopia de Fluorescência/métodos
2.
Drug Test Anal ; 11(4): 617-625, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30730110

RESUMO

The high frequency of the synthetic cannabinoid receptor agonists (SCRAs) emergence renders this group of new psychoactive compounds particularly demanding in terms of detection, identification, and responding. Without the available reference material, one of the specific problems is differentiation and structure elucidation of constitutional isomers. Herein, we report a simple and efficient flow chart diagram applicable for a rapid nuclear magnetic resonance (NMR) identification and differentiation between azaindoles, 4-, 5-, 6-, and 7-azaindole, which is a common structural motif of synthetic cannabinoids. The flow chart diagram is based on 1 H NMR and 1 H-15 N NMR spectra, and to prove the concept, it has been tested on 5F-MDMB-P7AICA (1). Spectral and analytical data including standard 1D and 2D NMR spectra, gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared-attenuated total reflectant (FTIR-ATR), Raman, melting point, and combustion analysis are provided for compound 1.


Assuntos
Canabinoides/análise , Drogas Desenhadas/análise , Indóis/análise , Psicotrópicos/análise , Agonistas de Receptores de Canabinoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Drogas Ilícitas/análise , Isomerismo , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...