Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(5)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35632734

RESUMO

RNA viruses, such as foot-and-mouth disease virus (FMDV), have error-prone replication resulting in the continuous emergence of new viral strains capable of evading current vaccine coverage. Vaccine formulations must be regularly updated, which is both costly and technically challenging for many vaccine platforms. In this report, we describe a plasmid-based virus-like particle (VLP) production platform utilizing transiently transfected mammalian cell cultures that combines both the rapid response adaptability of nucleic-acid-based vaccines with the ability to produce intact capsid epitopes required for immunity. Formulated vaccines which employed this platform conferred complete protection from clinical foot-and-mouth disease in both swine and cattle. This novel platform can be quickly adapted to new viral strains and serotypes through targeted exchanges of only the FMDV capsid polypeptide nucleic acid sequences, from which processed structural capsid proteins are derived. This platform obviates the need for high biocontainment manufacturing facilities to produce inactivated whole-virus vaccines from infected mammalian cell cultures, which requires upstream expansion and downstream concentration of large quantities of live virulent viruses.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Proteínas do Capsídeo/metabolismo , Bovinos , Técnicas de Cultura de Células , Mamíferos , Suínos , Vacinas de Produtos Inativados , Vacinas Virais/genética
2.
J Immunol Methods ; 487: 112873, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32998052

RESUMO

This report covers the methodology for generation of stable heterohybridoma clones producing Foot-and-mouth disease virus (FMDV) reactive porcine monoclonal antibodies (mAbs). Swine received five inoculations of an inactivated O1 Manisa FMDV vaccine prior to the harvest of splenocytes. Due to the lack of a species-specific hybridoma fusion partner, the Sp2/0 murine myeloma cell line was utilized for the formation of porcine-murine heterohybridoma clones. Twenty-nine FMDV-reactive parental clones were generated. Following sub-cloning and monitoring of reactivity over 20 serial passages, eleven subclones derived from unique parental origins were characterized and are reported herein. This methodology demonstrated the production of porcine mAbs by fusion of porcine splenocytes from immunized pigs with murine myeloma cells to generate heterohybridomas. The porcine immune response may differ from the murine immune response in relation to recognized epitopes. Therefore, application of this methodology may provide valuable resources for swine immunology and enhance the understanding of the mechanisms for antibody based protection from diseases in swine.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais/farmacologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Linfócitos B/imunologia , Linhagem Celular , Clonagem Molecular , Febre Aftosa/imunologia , Febre Aftosa/virologia , Hibridomas , Imunização , Camundongos , Baço/imunologia , Sus scrofa , Vacinas Virais/imunologia
3.
J Gen Virol ; 100(3): 446-456, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30702422

RESUMO

The production of experimental molecular vaccines against foot-and-mouth disease virus utilizes the viral encoded 3C protease for processing of the P1 polyprotein. Expression of wild type 3C protease is detrimental to host cells. The molecular vaccine constructs containing the 3C protease L127P mutant significantly reduce adverse effects associated with protease expression while retaining the ability to process and assemble virus-like particles. In published 3C protease crystal structures, the L127 residue is contained within the B2 ß-strand as part of the A2-B2 ß-sheet. To provide insight into the mechanism by which the L127P mutant alters the properties of the 3C protease, we performed scanning proline mutagenesis of residues 123-128 of the B2 ß-strand and monitored expression and P1 processing. Simultaneously, we utilized random mutagenesis of the full 3C sequence to identify additional mutations presenting a phenotype similar to the L127P mutation. Six of the tested mutants enhanced expression over wild type, and the I22P, T100P and V124P mutations surpassed the L127P mutation in certain cell lines. These data areinterpreted in conjunction with published 3C protease crystal structures to provide insight into the mechanism by which these mutations enhance expression.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Vírus da Febre Aftosa/enzimologia , Febre Aftosa/virologia , Peptídeos/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteases Virais 3C , Animais , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Mutagênese , Peptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Prolina/genética , Prolina/metabolismo , Conformação Proteica em Folha beta , Processamento Pós-Transcricional do RNA , Proteínas Virais/metabolismo
4.
Plant Biotechnol J ; 17(2): 410-420, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29993179

RESUMO

Classical Swine Fever Virus (CSFV) causes classical swine fever, a highly contagious hemorrhagic fever affecting both feral and domesticated pigs. Outbreaks of CSF in Europe, Asia, Africa and South America had significant adverse impacts on animal health, food security and the pig industry. The disease is generally contained by prevention of exposure through import restrictions (e.g. banning import of live pigs and pork products), localized vaccination programmes and culling of infected or at-risk animals, often at very high cost. Current CSFV-modified live virus vaccines are protective, but do not allow differentiation of infected from vaccinated animals (DIVA), a critical aspect of disease surveillance programmes. Alternatively, first-generation subunit vaccines using the viral protein E2 allow for use of DIVA diagnostic tests, but are slow to induce a protective response, provide limited prevention of vertical transmission and may fail to block viral shedding. CSFV E2 subunit vaccines from a baculovirus/insect cell system have been developed for several vaccination campaigns in Europe and Asia. However, this expression system is considered expensive for a veterinary vaccine and is not ideal for wide-spread deployment. To address the issues of scalability, cost of production and immunogenicity, we have employed an Agrobacterium-mediated transient expression platform in Nicotiana benthamiana and formulated the purified antigen in novel oil-in-water emulsion adjuvants. We report the manufacturing of adjuvanted, plant-made CSFV E2 subunit vaccine. The vaccine provided complete protection in challenged pigs, even after single-dose vaccination, which was accompanied by strong virus neutralization antibody responses.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Vacinação/veterinária , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Suínos , Nicotiana/genética , Nicotiana/metabolismo , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/genética
5.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878081

RESUMO

The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria.IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production.


Assuntos
Substituição de Aminoácidos , Cisteína Endopeptidases/imunologia , Vírus da Febre Aftosa/imunologia , Mutação de Sentido Incorreto , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Proteases Virais 3C , Animais , Cisteína Endopeptidases/genética , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Células HEK293 , Humanos , Proteínas Virais/genética , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...