Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
J Nutr Health Aging ; 23(8): 739-745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560032

RESUMO

OBJECTIVES: Autophagy is a physiological and highly regulated mechanism, crucial for cell homeostasis maintenance. Its impairment seems to be involved in the onset of several diseases, including muscular dystrophies, myopathies and sarcopenia. According to few papers, chemotherapeutic drug treatment is able to trigger side effects on skeletal muscle tissue and, among these, a defective autophagic activation, which leads to the persistence of abnormal organelles within cells and, finally, to myofiber degeneration. The aim of this work is to find a strategy, based on diet modulation, to prevent etoposide-induced damage, in a model of in vitro skeletal muscle cells. METHODS: Glutamine supplementation and nutrient deprivation have been chosen as pre-treatments to counteract etoposide effect, a chemotherapeutic drug known to induce oxidative stress and cell death. Cell response has been evaluated by means of morpho-functional, cytofluorimetric and molecular analyses. RESULTS: Etoposide treated cells, if compared to control, showed dysfunctional mitochondria presence, ER stress and lysosomal compartment damage, confirmed by molecular investigations. CONCLUSIONS: Interestingly, both dietary approaches were able to rescue myofiber from etoposide-induced damage. Glutamine supplementation, in particular, seemed to be a good strategy to preserve cell ultrastructure and functionality, by preventing the autophagic impairment and partially restoring the normal lysosomal activity, thus maintaining skeletal muscle homeostasis.


Assuntos
Autofagia/fisiologia , Dieta/métodos , Músculo Esquelético/fisiopatologia , Humanos
2.
Neurogastroenterol Motil ; 30(9): e13346, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29644781

RESUMO

BACKGROUND: Achalasia is a rare motility disorder characterized by myenteric neuron and interstitial cells of Cajal (ICC) abnormalities leading to deranged/absent peristalsis and lack of relaxation of the lower esophageal sphincter. The mechanisms contributing to neuronal and ICC changes in achalasia are only partially understood. Our goal was to identify novel molecular features occurring in patients with primary achalasia. METHODS: Esophageal full-thickness biopsies from 42 (22 females; age range: 16-82 years) clinically, radiologically, and manometrically characterized patients with primary achalasia were examined and compared to those obtained from 10 subjects (controls) undergoing surgery for uncomplicated esophageal cancer (or upper stomach disorders). Tissue RNA extracted from biopsies of cases and controls was used for library preparation and sequencing. Data analysis was performed with the "edgeR" option of R-Bioconductor. Data were validated by real-time RT-PCR, western blotting and immunohistochemistry. KEY RESULTS: Quantitative transcriptome evaluation and cluster analysis revealed 111 differentially expressed genes, with a P ≤ 10-3 . Nine genes with a P ≤ 10-4 were further validated. CYR61, CTGF, c-KIT, DUSP5, EGR1 were downregulated, whereas AKAP6 and INPP4B were upregulated in patients vs controls. Compared to controls, immunohistochemical analysis revealed a clear increase in INPP4B, whereas c-KIT immunolabeling resulted downregulated. As INPP4B regulates Akt pathway, we used western blot to show that phospho-Akt was significantly reduced in achalasia patients vs controls. CONCLUSIONS & INFERENCES: The identification of altered gene expression, including INPP4B, a regulator of the Akt pathway, highlights novel signaling pathways involved in the neuronal and ICC changes underlying primary achalasia.


Assuntos
Acalasia Esofágica/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Proteínas Proto-Oncogênicas c-kit/biossíntese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Regulação para Baixo , Feminino , Humanos , Células Intersticiais de Cajal/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Transcriptoma , Adulto Jovem
3.
Leukemia ; 32(1): 1-10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951560

RESUMO

CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2 pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic leukemia patients.


Assuntos
Caseína Quinase II/metabolismo , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
4.
Leukemia ; 30(11): 2142-2151, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27461062

RESUMO

Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of hematological cancers.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/enzimologia , Terapia de Alvo Molecular/métodos , Progressão da Doença , Humanos , Lisofosfolipídeos/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inibidores
5.
Leukemia ; 28(11): 2197-205, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24699302

RESUMO

Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Benzotiazóis/farmacologia , Sinergismo Farmacológico , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Humanos , Indóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Pessoa de Meia-Idade , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteoma/antagonistas & inibidores , Proteoma/metabolismo , Pirróis/farmacologia , Estudos Retrospectivos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sunitinibe , Células Tumorais Cultivadas , Adulto Jovem
6.
Leukemia ; 28(3): 543-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24253024

RESUMO

Constitutively active casein kinase 2 (CK2) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). CK2 phosphorylates PTEN (phosphatase and tensin homolog) tumor suppressor, resulting in PTEN stabilization and functional inactivation. Downregulation of PTEN activity has an impact on PI3K/Akt/mTOR signaling, which is of fundamental importance for T-ALL cell survival. These observations lend compelling weight to the application of CK2 inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of CX-4945-a novel, highly specific, orally available, ATP-competitive inhibitor of CK2α. We show that CX-4945 treatment induced apoptosis in T-ALL cell lines and patient T lymphoblasts. CX-4945 downregulated PI3K/Akt/mTOR signaling in leukemic cells. Notably, CX-4945 affected the unfolded protein response (UPR), as demonstrated by a significant decrease in the levels of the main UPR regulator GRP78/BIP, and led to apoptosis via upregulation of the ER stress/UPR cell death mediators IRE1α and CHOP. In vivo administration of CX-4945 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth. Our findings indicate that modulation of the ER stress/UPR signaling through CK2 inhibition could be exploited for inducing apoptosis in T-ALL cells and that CX-4945 may be an efficient treatment for those T-ALLs displaying upregulation of CK2α/PI3K/Akt/mTOR signaling.


Assuntos
Antineoplásicos/uso terapêutico , Caseína Quinase II/antagonistas & inibidores , Naftiridinas/uso terapêutico , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transdução de Sinais , Resposta a Proteínas não Dobradas , Animais , Divisão Celular , Chaperona BiP do Retículo Endoplasmático , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/química , Fenazinas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
7.
Leukemia ; 28(6): 1196-206, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24310736

RESUMO

Constitutively active phosphoinositide 3-kinase (PI3K) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival and drug resistance. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120 (BKM120), an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in G2/M phase cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T lymphoblasts, and promoting a dose- and time-dependent dephosphorylation of Akt and S6RP. BKM120 maintained its pro-apoptotic activity against Jurkat cells even when cocultured with MS-5 stromal cells, which mimic the bone marrow microenvironment. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. Moreover, in vivo administration of BKM120 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth, thus prolonging survival time. Taken together, our findings indicate that BKM120, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment for T-ALLs that have aberrant upregulation of the PI3K signaling pathway.


Assuntos
Aminopiridinas/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Animais , Western Blotting , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Leukemia ; 28(1): 15-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23778311

RESUMO

Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/ß-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.


Assuntos
Carcinogênese , Quinase 3 da Glicogênio Sintase/metabolismo , Hematopoese , Leucemia/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Humanos , Leucemia/enzimologia , Leucemia/metabolismo , Leucemia/terapia
9.
Leukemia ; 28(4): 739-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23892718

RESUMO

B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G0/G1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Everolimo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Oxidiazóis/farmacologia , Sirolimo/análogos & derivados , Sirolimo/farmacologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-23215723

RESUMO

The phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) are two major signaling molecules in the PI3K/Akt/mTOR signal transduction cascade. This pathway is a key regulator of a wide range of physiological cell processes which include proliferation, differentiation, survival, metabolism, exocytosis, motility, and autophagy. However, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences response to therapeutic treatments. Therefore, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome. The PI3K/Akt/mTOR signaling network is activated in acute leukemias of both myelogenous and lymphoid lineage, where it correlates with poor prognosis and enhanced drug-resistance. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds that targeted the catalytic site of both PI3K and mTOR (e.g. PI-103, NVP-BEZ235). In preclinical settings, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against leukemic cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin and its derivatives (rapalogs). At variance with rapamycin/rapalogs, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenetic protein translation in leukemic cells. Hence, they strongly reduced the proliferation rate and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors represent a promising option for future targeted therapies of leukemic patients.

11.
Leukemia ; 26(12): 2474-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22596089

RESUMO

Inositide signaling pathways can have a role in the Myelodysplastic Syndromes (MDS) progression to acute myeloid leukemia. Erythropoietin (EPO) is currently used in low-risk MDS, where it successfully corrects anemia in 50-70% of patients. However, some MDS patients are refractory to this treatment and little is known about the exact molecular mechanisms underlying the effect of EPO in these subjects. Here, we investigated the role of inositide pathways in low-risk MDS treated with EPO, mainly focusing on the Akt/PI-PLC (Phosphoinositide-Phospholipase C) gamma1 axis, which is activated by the EPO receptor, and PI-PLCbeta1/Cyclin D3 signaling, as Cyclin D3 is associated with hematopoietic proliferation and differentiation. Interestingly, EPO responder patients showed a specific activation of both the Akt/PI-PLCgamma1 pathway and beta-Globin gene expression, while nonresponders displayed an increase in PI-PLCbeta1 signaling. Moreover, in normal CD34+ cells induced to erythroid differentiation, PI-PLCbeta1 overexpression abrogated both EPO-induced Akt phosphorylation and beta-Globin expression. Overall, these findings suggest that PI-PLCbeta1 can act as a negative regulator of erythroid differentiation and confirm the involvement of Akt/PI-PLCgamma1 pathway in EPO signaling, therefore contributing to the comprehension of the effect of EPO in low-risk MDS and possibly paving the way to the identification of MDS patients at higher risk of refractoriness to EPO treatment.


Assuntos
Núcleo Celular/metabolismo , Eritropoetina/uso terapêutico , Síndromes Mielodisplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Estudos de Casos e Controles , Diferenciação Celular , Núcleo Celular/genética , Ciclina D3 , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Fosfatidilinositóis/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Globinas beta/genética , Globinas beta/metabolismo
12.
Leukemia ; 26(11): 2336-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22614243

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G(0)/G(1) phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/ß and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34(+)/CD4(-)/CD7(-)), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Transdução de Sinais
13.
Leukemia ; 26(5): 943-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22033492

RESUMO

Phosphoinositide-phospholipase C (PI-PLC) beta1 can be considered a specific target for demethylating therapy in high-risk myelodysplastic syndrome (MDS) patients, as azacitidine treatment has been associated with a PI-PLCbeta1-specific promoter demethylation, and induction of PI-PLCbeta1 gene and protein expression. However, little is known about the molecular effect of azacitidine in low-risk MDS or the functional mechanisms linked with azacitidine effect on PI-PLCbeta1 promoter. In the present study, we further investigated the role of epigenetic regulation of PI-PLCbeta1, mainly focusing on the structure of the PI-PLCbeta1 promoter. We first examined the effect of azacitidine on PI-PLCbeta1 promoter methylation and gene expression in low-risk MDS. Moreover, we studied the expression of key molecules associated with the nuclear inositide signaling pathways, such as cyclin D3. By applying a chromatin immunoprecipitation method, we also studied the correlation between the demethylating effect of azacitidine and the degree of recruitment to PI-PLCbeta1 promoter of some transcription factors implicated in hematopoietic stem cell proliferation and differentiation, as well as of the methyl-CpG-binding domain proteins, which specifically interact with methylated DNA. Taken together, our results hint at a specific involvement of PI-PLCbeta1 in epigenetic mechanisms, and are particularly consistent with the hypothesis of a role for PI-PLCbeta1 in azacitidine-induced myeloid differentiation.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Epigênese Genética , Síndromes Mielodisplásicas/tratamento farmacológico , Fosfatidilinositóis/metabolismo , Fosfolipase C beta/metabolismo , Transdução de Sinais , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Metilação de DNA , Primers do DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Síndromes Mielodisplásicas/enzimologia , Síndromes Mielodisplásicas/patologia , Fosfolipase C beta/genética , Regiões Promotoras Genéticas
14.
Leukemia ; 26(1): 91-100, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21968881

RESUMO

The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4(+) T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL.


Assuntos
Adenilato Quinase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Citometria de Fluxo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Metformina/farmacologia , Complexos Multiproteicos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR
15.
Curr Med Chem ; 18(18): 2715-26, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21649579

RESUMO

Cancer stem cells (CSCs) comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts of genetically modified murine models. CSCs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation, and metastasis. The existence of CSCs could explain the high frequency of neoplasia relapse and resistance to all of currently available therapies, including chemotherapy. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is a key regulator of physiological cell processes which include proliferation, differentiation, apoptosis, motility, metabolism, and autophagy. Nevertheless, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences prognosis. Several lines of evidence indicate that this signaling system plays a key role also in CSC biology. Of note, CSCs are more sensitive to pathway inhibition with small molecules when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling transduction pathways between CSCs and healthy stem cells can be identified. Here, we review the evidence which links the signals deriving from the PI3K/Akt/mTOR network with CSC biology, both in hematological and solid tumors. We then highlight how therapeutic targeting of PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome, by eliminating CSCs.


Assuntos
Mamíferos/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
16.
Leukemia ; 25(7): 1080-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21494257

RESUMO

The Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway is often implicated in sensitivity and resistance to leukemia therapy. Dysregulated signaling through the Ras/Raf/MEK/ERK pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Unrestricted leukemia proliferation and decreased sensitivity to apoptotic-inducing agents and chemoresistance are typically associated with activation of pro-survival pathways. Mutations in this pathway and upstream signaling molecules can alter sensitivity to small molecule inhibitors targeting components of this cascade as well as to inhibitors targeting other key pathways (for example, phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/mammalian target of rapamycin (mTOR)) activated in leukemia. Similarly, PI3K mutations can result in resistance to inhibitors targeting the Ras/Raf/MEK/ERK pathway, indicating important interaction points between the pathways (cross-talk). Furthermore, the Ras/Raf/MEK/ERK pathway can be activated by chemotherapeutic drugs commonly used in leukemia therapy. This review discusses the mechanisms by which abnormal expression of the Ras/Raf/MEK/ERK pathway can contribute to drug resistance as well as resistance to targeted leukemia therapy. Controlling the expression of this pathway could improve leukemia therapy and ameliorate human health.


Assuntos
Antineoplásicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Leucemia/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/fisiologia , Quinases raf/fisiologia , Proteínas ras/fisiologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Modelos Biológicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética
17.
Leukemia ; 25(7): 1064-79, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21436840

RESUMO

It has become apparent that regulation of protein translation is an important determinant in controlling cell growth and leukemic transformation. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten (PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway is often implicated in sensitivity and resistance to therapy. Dysregulated signaling through the PI3K/PTEN/Akt/mTOR pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Furthermore, this pathway is activated by autocrine transformation mechanisms. PTEN is a critical tumor suppressor gene and its dysregulation results in the activation of Akt. PTEN is often mutated, silenced and is often haploinsufficient. The mTOR complex1 (mTORC1) regulates the assembly of the eukaryotic initiation factor4F complex, which is critical for the translation of mRNAs that are important for cell growth, prevention of apoptosis and transformation. These mRNAs have long 5'-untranslated regions that are G+C rich, rendering them difficult to translate. Elevated mTORC1 activity promotes the translation of these mRNAs via the phosphorylation of 4E-BP1. mTORC1 is a target of rapamycin and novel active-site inhibitors that directly target the TOR kinase activity. Although rapamycin and novel rapalogs are usually cytostatic and not cytotoxic for leukemic cells, novel inhibitors that target the kinase activities of PI3K and mTOR may prove more effective for leukemia therapy.


Assuntos
Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas de Neoplasias/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Leucemia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , MicroRNAs/genética , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/efeitos dos fármacos , Complexos Multiproteicos/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Proteínas/efeitos dos fármacos , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Pseudogenes , RNA Mensageiro/genética , RNA Neoplásico/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/fisiologia
18.
Leukemia ; 25(5): 781-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21331075

RESUMO

The mammalian Target Of Rapamycin (mTOR) serine/threonine kinase belongs to two multi-protein complexes, referred to as mTORC1 and mTORC2. mTOR-generated signals have critical roles in leukemic cell biology by controlling mRNA translation of genes that promote proliferation and survival. However, allosteric inhibition of mTORC1 by rapamycin has only modest effects in T-cell acute lymphoblastic leukemia (T-ALL). Recently, ATP-competitive inhibitors specific for the mTOR kinase active site have been developed. In this study, we have explored the therapeutic potential of active-site mTOR inhibitors against both T-ALL cell lines and primary samples from T-ALL patients displaying activation of mTORC1 and mTORC2. The inhibitors affected T-ALL cell viability by inducing cell-cycle arrest in G(0)/G(1) phase, apoptosis and autophagy. Western blot analysis demonstrated a Ser 473 Akt dephosphorylation (indicative of mTORC2 inhibition) and a dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cell lines treated with active-site mTOR inhibitors. The inhibitors strongly synergized with both vincristine and the Bcl-2 inhibitor, ABT-263. Remarkably, the drugs targeted a putative leukemia-initiating cell sub-population (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, the inhibitors displayed remarkable anti-leukemic activity, which emphasizes their future development as clinical candidates for therapy in T-ALL.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Western Blotting , Domínio Catalítico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imunossupressores/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
19.
Leukemia ; 25(2): 236-45, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21072047

RESUMO

A number of cancers possess constitutive activity of the dsRNA-dependent kinase, PKR. Inhibition of PKR in these cancers leads to tumor cell death. We recently reported the increased presence of PKR phosphorylated on Thr451 (p-T451 PKR) in clinical samples from myelodysplastic syndrome (MDS) patients and acute leukemia cell lines. Whereas p-T451 PKR in low-risk patient samples or PTEN-positive acute leukemia cell lines was mostly cytoplasmic, in high-risk patient samples and acute leukemia cell lines deficient in PTEN, p-T451 PKR was mainly nuclear. As nuclear activity of PKR has not been previously characterized, we examined the status of nuclear PKR in acute leukemia cell lines. Using antibodies to N-terminus, C-terminus and the kinase domain in conjunction with a proteomics approach, we found that PKR exists in diverse molecular weight forms in the nucleus. Analysis of PKR transcripts by reverse transcriptase-PCR, and PKR-derived peptides by MS/MS revealed that these forms were the result of post-translational modifications (PTMs). Biochemical analysis demonstrated that nuclear PKR is an active kinase that can respond to stress. Given the association of PKR with PTEN and the Fanconi complex, these results indicate that PKR likely has other previously unrecognized roles in nuclear signaling that may contribute to leukemic development.


Assuntos
Núcleo Celular/enzimologia , Leucemia/patologia , Estresse Fisiológico , eIF-2 Quinase/análise , Doença Aguda , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Leucemia/enzimologia , Mitomicina/farmacologia , Peso Molecular , Processamento de Proteína Pós-Traducional , Transdução de Sinais , eIF-2 Quinase/fisiologia
20.
Leukemia ; 25(2): 271-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21109771

RESUMO

The association between azacitidine (AZA) and valproic acid (VPA) has shown high response rates in high-risk myelodysplastic syndromes (MDS) cases with unfavorable prognosis. However, little is known about the molecular mechanisms underlying this therapy, and molecular markers useful to monitor the disease and the effect of the treatment are needed. Phosphoinositide-phospholipase C (PI-PLC) ß1 is involved in both genetic and epigenetic mechanisms of MDS progression to acute myeloid leukemia. Indeed, AZA as a single agent was able to induce PI-PLCß1 expression, therefore providing a promising new tool in the evaluation of response to demethylating therapies. In this study, we assessed the efficacy of the combination of AZA and VPA on inducing PI-PLCß1 expression in high-risk MDS patients. Furthermore, we observed an increase in Cyclin D3 expression, a downstream target of PI-PLCß1 signaling, therefore suggesting a potential combined activity of AZA and VPA in high-risk MDS in activating PI-PLCß1 signaling, thus affecting cell proliferation and differentiation. Taken together, our findings might open up new lines of investigations aiming at evaluating the role of the activation of PI-PLCß1 signaling in the epigenetic therapy, which may also lead to the identification of innovative targets for the epigenetic therapy of high-risk MDS.


Assuntos
Azacitidina/farmacologia , Síndromes Mielodisplásicas/tratamento farmacológico , Fosfoinositídeo Fosfolipase C/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos de Casos e Controles , Células Cultivadas , Metilação de DNA , Sinergismo Farmacológico , Inibidores Enzimáticos , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...