Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 62(2): 119-131, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31758489

RESUMO

3-hydroxy-3-methyl glutaryl-CoA reductase, also known as HMGR, plays a crucial role in regulating cholesterol biosynthesis and represents the main pharmacological target of statins. In mammals, this enzyme localizes to the endoplasmic reticulum membrane. HMGR includes different regions, an integral N-terminal domain connected by a linker-region to a cytosolic C-terminal domain, the latter being responsible for enzymatic activity. The aim of this work was to design a simple strategy for cloning, expression, and purification of the catalytic C-terminal domain of the human HMGR (cf-HMGR), in order to spectrophotometrically test its enzymatic activity. The recombinant cf-HMGR protein was heterologously expressed in Escherichia coli, purified by Ni+-agarose affinity chromatography and reconstituted in its active form. MALDI mass spectrometry was adopted to monitor purification procedure as a technique orthogonal to the classical Western blot analysis. Protein identity was validated by MS and MS/MS analysis, confirming about 82% of the recombinant sequence. The specific activity of the purified and dialyzed cf-HMGR preparation was enriched about 85-fold with respect to the supernatant obtained from cell lysate. The effective, cheap, and easy method here described could be useful for screening statin-like molecules, so simplifying the search for new drugs with hypocholesterolemic effects.


Assuntos
Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sequência de Aminoácidos/genética , Domínio Catalítico , Cromatografia de Afinidade , Clonagem Molecular , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Expressão Gênica , Humanos , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
2.
J Biochem ; 164(4): 313-322, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893873

RESUMO

Several ATP-depending reactions take place in the endoplasmic reticulum (ER). Although in Saccharomyces cerevisiae ER the existence of a Sac1p-dependent ATP transport system was already known, its direct involvement in ATP transport was excluded. Here we report an extensive biochemical characterization of a partially purified adenine nucleotide transport system (ANTS) not dependent on Sac1p. Highly purified ER membranes from the wild-type and Δsac1 yeast strains reconstituted into liposomes transported ATP with the same efficiency. A chromatography on hydroxyapatite was used to partially purify ANTS from Δsac1 ER extract. The two ANTS-enriched transport activity eluted fractions showed essentially the presence of four bands, one having an apparent MW of 56 kDa, similar to that observed for ANTS identified in rat liver ER. The two fractions reconstituted into liposomes efficiently transported, by a strict counter-exchange mechanism, ATP and ADP. ATP transport was saturable with a Km of 0.28 mM. The ATP/ADP exchange mechanism and the kinetic constants suggest that the main physiological role of ANTS is to catalyse the transport of ATP into ER, where it is used in several energy-requiring reactions and to export back to the cytosol the ADP produced.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Retículo Endoplasmático/química , Espectrometria de Massas , Proteínas de Saccharomyces cerevisiae/química
3.
Biochim Biophys Acta ; 1827(10): 1245-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23850633

RESUMO

The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Evolução Molecular , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/química , Animais , Sítios de Ligação , Primers do DNA/química , Primers do DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Éxons/genética , Humanos , Concentração de Íons de Hidrogênio , Íntrons/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/isolamento & purificação , Proteínas Mitocondriais/química , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
4.
Biochim Biophys Acta ; 1831(6): 1027-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23370576

RESUMO

The citrate carrier (CIC), a nuclear-encoded protein located in the mitochondrial inner membrane, plays an important metabolic role in the transport of acetyl-CoA from the mitochondrion to the cytosol in the form of citrate for fatty acid and cholesterol synthesis. Citrate has been reported to be essential for fibroblast differentiation into fat cells. Because peroxisome proliferator-activated receptor-gamma (PPARγ) is known to be one of the master regulators of adipogenesis, we aimed to study the regulation of CIC by the PPARγ ligand rosiglitazone (BRL) in 3T3-L1 fibroblasts and in adipocytes. We demonstrated that BRL up-regulated CIC mRNA and protein levels in fibroblasts, while it did not elicit any effects in mature adipocytes. The enhancement of CIC levels upon BRL treatment was reversed using the PPARγ antagonist GW9662, addressing how this effect was mediated by PPARγ. Functional experiments using a reporter gene containing rat CIC promoter showed that BRL enhanced CIC promoter activity. Mutagenesis studies, electrophoretic-mobility-shift assay and chromatin-immunoprecipitation analysis revealed that upon BRL treatment, PPARγ and Sp1 are recruited on the Sp1-containing region within the CIC promoter, leading to an increase in CIC expression. In addition, mithramycin, a specific inhibitor for Sp1-DNA binding activity, abolished the PPARγ-mediated up-regulation of CIC in fibroblasts. The stimulatory effects of BRL disappeared in mature adipocytes in which PPARγ/Sp1 complex recruited SMRT corepressor to the Sp1 site of the CIC promoter. Taken together, our results contribute to clarify the molecular mechanisms by which PPARγ regulates CIC expression during the differentiation stages of fibroblasts into mature adipocytes.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , PPAR gama/metabolismo , Proteínas Repressoras/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Luciferases/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Correpressor 2 de Receptor Nuclear/antagonistas & inibidores , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , PPAR gama/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Tiazolidinedionas/farmacologia , Ativação Transcricional , Regulação para Cima
5.
Biochim Biophys Acta ; 1810(12): 1323-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21791237

RESUMO

BACKGROUND: Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance. METHODS: The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC(50) and the half-saturation constant of the transporter for external fosfomycin (K(i)) were determined by transport assay of [(14)C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured. RESULTS: Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC(50) of 6.4mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the K(i) measured was 1.65mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects. CONCLUSIONS: The poor transport observed in a reconstituted system together with the high value of K(i) and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections. GENERAL SIGNIFICANCE: This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.


Assuntos
Escherichia coli/metabolismo , Fosfomicina/química , Glicerol/metabolismo , Fosfatos/metabolismo , Cromatografia de Afinidade
6.
Biochim Biophys Acta ; 1807(3): 251-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21130726

RESUMO

The dicarboxylate carrier is an important member of the mitochondrial carrier family, which catalyzes an electroneutral exchange across the inner mitochondrial membrane of dicarboxylates for inorganic phosphate and certain sulfur-containing compounds. Screening of the Drosophila melanogaster genome revealed the presence of a mitochondrial carrier subfamily constituted by four potential homologs of mammalian and yeast mitochondrial dicarboxylate carriers designated as DmDic1p, DmDic2p, DmDic3p, and DmDic4p. In this paper, we report that DmDIC1 is broadly expressed at comparable levels in all development stages investigated whereas DmDIC3 and DmDIC4 are expressed only in the pupal stage, no transcripts are detectable for DmDIC2. All expressed proteins are localized in mitochondria. The transport activity of DmDic1-3-4 proteins has been investigated by reconstitution of recombinant purified protein into liposomes. DmDic1p is a typical dicarboxylate carrier showing similar substrate specificity and inhibitor sensitivity as mammalian and yeast mitochondrial dicarboxylate carriers. DmDic3p seems to be an atypical dicarboxylate carrier being able to transport only inorganic phosphate and certain sulfur-containing compounds. No transport activity was observed for DmDic4p. The biochemical results have been supported at molecular level by computing the protein structures and by structural alignments. All together these results indicate that D. melanogaster dicarboxylate carriers form a protein subfamily but the modifications in the amino acids sequences are indicative of specialized functions.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Animais , Biologia Computacional , Transportadores de Ácidos Dicarboxílicos/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Isoformas de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...