Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Biol ; 36(6): e13968, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35686508

RESUMO

Africa's protected areas (PAs) are the last stronghold of the continent's unique biodiversity, but they appear increasingly threatened by climate change, substantial human population growth, and land-use change. Conservation planning is challenged by uncertainty about how strongly and where these drivers will interact over the next few decades. We investigated the combined future impacts of climate-driven vegetation changes inside African PAs and human population densities and land use in their surroundings for 2 scenarios until the end of the 21st century. We used the following 2 combinations of the shared socioeconomic pathways (SSPs) and representative greenhouse gas concentration pathways (RCPs): the "middle-of-the-road" scenario SSP2-RCP4.5 and the resource-intensive "fossil-fueled development" scenario SSP5-RCP8.5. Climate change impacts on tree cover and biome type (i.e., desert, grassland, savanna, and forest) were simulated with the adaptive dynamic global vegetation model (aDGVM). Under both scenarios, most PAs were adversely affected by at least 1 of the drivers, but the co-occurrence of drivers was largely region and scenario specific. The aDGVM projections suggest considerable climate-driven tree cover increases in PAs in today's grasslands and savannas. For PAs in West Africa, the analyses revealed climate-driven vegetation changes combined with hotspots of high future population and land-use pressure. Except for many PAs in North Africa, future decreases in population and land-use pressures were rare. At the continental scale, SSP5-RCP8.5 led to higher climate-driven changes in tree cover and higher land-use pressure, whereas SSP2-RCP4.5 was characterized by higher future population pressure. Both SSP-RCP scenarios implied increasing challenges for conserving Africa's biodiversity in PAs. Our findings underline the importance of developing and implementing region-specific conservation responses. Strong mitigation of future climate change and equitable development scenarios would reduce ecosystem impacts and sustain the effectiveness of conservation in Africa.


Las áreas protegidas (AP) de África son el último bastión de la biodiversidad distintiva del continente, pero cada vez están más amenazadas por el cambio climático, crecimiento sustancial de la población humana y cambio de uso de suelo. La planificación de la conservación enfrenta el reto de la incertidumbre de cuan fuerte y donde interactuarán estos factores a lo largo de las siguientes décadas. Investigamos los impactos futuros combinados de los cambios en la vegetación impulsados por el clima dentro de AP africanas y las densidades de población humana y el uso de suelo en sus alrededores en 2 escenarios hasta el final del siglo 21. Utilizamos las siguientes 2 combinaciones de las trayectorias socioeconómicas compartidas (SSP) y las trayectorias representativas de concentración de gases de invernadero (RCP): el escenario de "mitad del camino" SSP2-RCP4.5 y el escenario recurso intensivo "desarrollo impulsado por combustibles fósiles" SSP5-RCP8.5. Los impactos del cambio climático sobre la cobertura de árboles y el tipo de bioma (i. e., desierto, pastizal, sabana y bosque) fueron simulados con el modelo vegetación global dinámica adaptativo (aDGVM). En ambos escenarios, la mayoría de las AP fueron afectadas adversamente por lo menos por 1 de los factores, pero la coocurrencia de los factores fue mayoritariamente específica por región y escenario. Las proyecciones de MVGDa sugieren incrementos considerables en la cobertura de árboles impulsados por el clima en las AP en pastizales y sabanas actuales. Para AP en África Occidental, los análisis revelaron cambios en la vegetación impulsados por el clima combinados con sitios clave con numerosa población y gran presión de uso de suelo en el futuro. Excepto en muchos PA de África del Norte, los decrementos en la población y presiones de uso de suelo en el futuro fueron raros. A escala continental, SSP5-RCP8.5 condujo a mayores cambios impulsados por el clima en la cobertura arbórea y en la presión de cambio de uso de suelo, mientras que SSP5-RCP8.5 se caracterizó por una mayor presión demográfica en el futuro. Ambos escenarios SSP-RCP implicaron mayores retos para la conservación de la biodiversidad en AP africanas. Nuestros hallazgos subrayan la importancia de desarrollar e implementar respuestas de conservación específicas para cada región. Medidas sólidas para la mitigación del cambio climático así como escenarios de desarrollo equitativo podrían reducir los impactos en el ecosistema y sustentar la efectividad de la conservación en África.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Mudança Climática , Biodiversidade , Árvores , Fatores Socioeconômicos
2.
Glob Chang Biol ; 27(2): 340-358, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33037718

RESUMO

Anthropogenic climate change is expected to impact ecosystem structure, biodiversity and ecosystem services in Africa profoundly. We used the adaptive Dynamic Global Vegetation Model (aDGVM), which was originally developed and tested for Africa, to quantify sources of uncertainties in simulated African potential natural vegetation towards the end of the 21st century. We forced the aDGVM with regionally downscaled high-resolution climate scenarios based on an ensemble of six general circulation models (GCMs) under two representative concentration pathways (RCPs 4.5 and 8.5). Our study assessed the direct effects of climate change and elevated CO2 on vegetation change and its plant-physiological drivers. Total increase in carbon in aboveground biomass in Africa until the end of the century was between 18% to 43% (RCP4.5) and 37% to 61% (RCP8.5) and was associated with woody encroachment into grasslands and increased woody cover in savannas. When direct effects of CO2 on plants were omitted, woody encroachment was muted and carbon in aboveground vegetation changed between -8 to 11% (RCP 4.5) and -22 to -6% (RCP8.5). Simulated biome changes lacked consistent large-scale geographical patterns of change across scenarios. In Ethiopia and the Sahara/Sahel transition zone, the biome changes forecast by the aDGVM were consistent across GCMs and RCPs. Direct effects from elevated CO2 were associated with substantial increases in water use efficiency, primarily driven by photosynthesis enhancement, which may relieve soil moisture limitations to plant productivity. At the ecosystem level, interactions between fire and woody plant demography further promoted woody encroachment. We conclude that substantial future biome changes due to climate and CO2 changes are likely across Africa. Because of the large uncertainties in future projections, adaptation strategies must be highly flexible. Focused research on CO2 effects, and improved model representations of these effects will be necessary to reduce these uncertainties.


Assuntos
Mudança Climática , Ecossistema , África , África do Norte , Biodiversidade
3.
Glob Chang Biol ; 26(9): 5106-5124, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32531086

RESUMO

Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.


Assuntos
Mudança Climática , Ecossistema , Ásia , Biodiversidade , Humanos , Árvores , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...