Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Commun ; 15(1): 5046, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871717

RESUMO

People with lower extremity peripheral artery disease (PAD) have increased oxidative stress, impaired mitochondrial activity, and poor walking performance. NAD+ reduces oxidative stress and is an essential cofactor for mitochondrial respiration. Oral nicotinamide riboside (NR) increases bioavailability of NAD+ in humans. Among 90 people with PAD, this randomized double-blind clinical trial assessed whether 6-months of NR, with and without resveratrol, improves 6-min walk distance, compared to placebo, at 6-month follow-up. At 6-month follow-up, compared to placebo, NR significantly improved 6-min walk (+7.0 vs. -10.6 meters, between group difference: +17.6 (90% CI: + 1.8,+∞). Among participants who took at least 75% of study pills, compared to placebo, NR improved 6-min walk by 31.0 meters and NR + resveratrol improved 6-min walk by 26.9 meters. In this work, NR meaningfully improved 6-min walk, and resveratrol did not add benefit to NR alone in PAD. A larger clinical trial to confirm these findings is needed.


Assuntos
Niacinamida , Doença Arterial Periférica , Compostos de Piridínio , Resveratrol , Humanos , Doença Arterial Periférica/tratamento farmacológico , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Masculino , Feminino , Idoso , Método Duplo-Cego , Resveratrol/uso terapêutico , Resveratrol/farmacologia , Pessoa de Meia-Idade , Caminhada , Resultado do Tratamento , Estresse Oxidativo/efeitos dos fármacos
2.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R416-R426, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406845

RESUMO

Cerebrovascular reactivity (CVR) decreases with advancing age, contributing to increased risk of cognitive impairment; however, the mechanisms underlying the age-related decrease in CVR are incompletely understood. Age-related changes to T cells, such as impaired mitochondrial respiration, increased inflammation, likely contribute to peripheral and cerebrovascular dysfunction in animals. However, whether T-cell mitochondrial respiration is related to cerebrovascular function in humans is not known. Therefore, we hypothesized that peripheral T-cell mitochondrial respiration would be positively associated with CVR and that T-cell glycolytic metabolism would be negatively associated with CVR. Twenty middle-aged adults (58 ± 5 yr) were recruited for this study. T cells were separated from peripheral blood mononuclear cells. Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR, a marker of glycolytic activity) were measured using extracellular flux analysis. CVR was quantified using the breath-hold index (BHI), which reflects the change in blood velocity in the middle-cerebral artery (MCAv) during a 30-s breath-hold. In contrast to our hypothesis, we found that basal OCR in CD8+ T cells (ß = -0.59, R2 = 0.27, P = 0.019) was negatively associated with BHI. However, in accordance with our hypothesis, we found that basal ECAR (ß = -2.20, R2 = 0.29, P = 0.015) and maximum ECAR (ß = -50, R2 = 0.24, P = 0.029) were negatively associated with BHI in CD8+ T cells. There were no associations observed in CD4+ T cells. These associations appeared to be primarily mediated by an association with the pressor response to the breath-hold test. Overall, our findings suggest that CD8+ T-cell respiration and glycolytic activity may influence CVR in humans.NEW & NOTEWORTHY Peripheral T-cell metabolism is related to in vivo cerebrovascular reactivity in humans. Higher glycolytic metabolism in CD8+ T cells was associated with lower cerebrovascular reactivity to a breath-hold in middle-aged adults, which is possibly reflective of a more proinflammatory state in midlife.


Assuntos
Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Adulto , Humanos , Pessoa de Meia-Idade , Circulação Cerebrovascular/fisiologia , Respiração , Suspensão da Respiração
3.
J Cereb Blood Flow Metab ; 43(11): 1931-1941, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395479

RESUMO

Arterial stiffness and cerebrovascular pulsatility are non-traditional risk factors of Alzheimer's disease. However, there is a gap in understanding the earliest mechanisms that link these vascular determinants to brain aging. Changes to mechanical tissue properties of the hippocampus (HC), a brain structure essential for memory encoding, may reflect the impact of vascular dysfunction on brain aging. We tested the hypothesis that arterial stiffness and cerebrovascular pulsatility are related to HC tissue properties in healthy adults across the lifespan. Twenty-five adults underwent measurements of brachial blood pressure (BP), large elastic artery stiffness, middle cerebral artery pulsatility index (MCAv PI), and magnetic resonance elastography (MRE), a sensitive measure of HC viscoelasticity. Individuals with higher carotid pulse pressure (PP) exhibited lower HC stiffness (ß = -0.39, r = -0.41, p = 0.05), independent of age and sex. Collectively, carotid PP and MCAv PI significantly explained a large portion of the total variance in HC stiffness (adjusted R2 = 0.41, p = 0.005) in the absence of associations with HC volumes. These cross-sectional findings suggest that the earliest reductions in HC tissue properties are associated with alterations in vascular function.


Assuntos
Longevidade , Rigidez Vascular , Humanos , Adulto , Estudos Transversais , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Rigidez Vascular/fisiologia
4.
Am J Physiol Heart Circ Physiol ; 325(4): H617-H628, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477688

RESUMO

Aging increases arterial stiffness and wave reflections that augment left ventricular wasted pressure effort (WPE). A single bout of exercise may be effective at acutely reducing WPE via reductions in arterial wave reflections. In young adults (YA) acute aerobic exercise decreases, whereas handgrip increases, wave reflections. Whether acute exercise mitigates or exacerbates WPE and arterial wave reflection in healthy aging warrants further examination. The purpose of this study was to determine if there are age-related differences in WPE and wave reflection during acute handgrip and aerobic exercise. When compared with baseline, WPE increased substantially in older adults (OA) during handgrip (5,219 ± 2,396 vs. 7,019 ± 2,888 mmHg·ms, P < 0.001). When compared with baseline, there was a robust reduction in WPE in OA during moderate-intensity aerobic exercise (5,428 ± 2,084 vs. 3,290 ± 1,537 mmHg·ms, P < 0.001), despite absolute WPE remaining higher in OA compared with YA during moderate-intensity aerobic exercise (OA 3,290 ± 1,537 vs. YA 1,188 ± 962 mmHg·ms, P < 0.001). There was no change in wave reflection timing indexed to ejection duration in OA during handgrip (40 ± 6 vs. 38 ± 4%, P = 0.41) or moderate-intensity aerobic exercise (40 ± 5 vs. 42 ± 8%, P = 0.99). Conversely, there was an earlier return of wave reflection in YA during handgrip (60 ± 11 vs. 52 ± 6%, P < 0.001) and moderate-intensity aerobic exercise (59 ± 7 vs. 51 ± 9%, P < 0.001). Changes in stroke volume were not different between groups during handgrip (P = 0.08) or aerobic exercise (P = 0.47). The greater increase in WPE during handgrip and decrease in WPE during aerobic exercise suggest that aortic hemodynamic responses to acute exercise are exaggerated with healthy aging without affecting stroke volume.NEW & NOTEWORTHY We demonstrated that acute aerobic exercise attenuated, whereas handgrip augmented, left ventricular hemodynamic load from wave reflections more in healthy older (OA) compared with young adults (YA) without altering stroke volume. These findings suggest an exaggerated aortic hemodynamic response to acute exercise perturbations with aging. They also highlight the importance of considering exercise modality when examining aortic hemodynamic responses to acute exercise in older adults.


Assuntos
Envelhecimento Saudável , Rigidez Vascular , Adulto Jovem , Humanos , Idoso , Força da Mão , Artérias , Exercício Físico/fisiologia , Hemodinâmica , Pressão Sanguínea/fisiologia , Rigidez Vascular/fisiologia
5.
Psychophysiology ; 60(9): e14306, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37038273

RESUMO

Mild cognitive impairment (MCI), a prodromal stage of Alzheimer's disease, is characterized by decreased memory and cognition, which are linked to degenerative changes in the brain. To assess whether white matter (WM) integrity is compromised in MCI, we collected diffusion-weighted images from 60 healthy older adults (OA) (69.16 ± 0.7) and 20 older adults with amnestic MCI (72.45 ± 1.9). WM integrity differences were examined using Tract-Based Spatial Statistics (TBSS). We hypothesized that those with MCI would have diminished WM integrity relative to OA. In a whole-brain comparison, those with MCI showed higher axial diffusivity in the splenium (SCC) and body of the corpus callosum (BCC), superior corona radiata (SCR), and the retrolenticular part of the internal capsule (RLIC) (p's < .05 TFCE-corrected). Additionally, significant between-group connectivity differences were observed using probabilistic tractography between the SCC, chosen from the TBSS results, and forceps major and minor (p-value's < .05). To further relate a physical health indicator to WM alterations, linear regression showed significant interactions between cognitive status and body mass index (BMI) on diffusivity outcome measures from probabilistic tractography (p-value-'s < .05). Additionally, we examined the association between relational memory, BMI, and WM integrity. WM integrity was positively associated with relational memory performance. These findings suggest that these regions may be more sensitive to early markers of neurodegenerative disease and health behaviors, suggesting that modifiable lifestyle factors may affect white matter integrity.


Assuntos
Disfunção Cognitiva , Doenças Neurodegenerativas , Substância Branca , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Índice de Massa Corporal , Testes Neuropsicológicos , Disfunção Cognitiva/diagnóstico por imagem
6.
J Gerontol A Biol Sci Med Sci ; 78(12): 2435-2448, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068054

RESUMO

Advancing age and many disease states are associated with declines in nicotinamide adenine dinucleotide (NAD+) levels. Preclinical studies suggest that boosting NAD+ abundance with precursor compounds, such as nicotinamide riboside or nicotinamide mononucleotide, has profound effects on physiological function in models of aging and disease. Translation of these compounds for oral supplementation in humans has been increasingly studied within the last 10 years; however, the clinical evidence that raising NAD+ concentrations can improve physiological function is unclear. The goal of this review was to synthesize the published literature on the effects of chronic oral supplementation with NAD+ precursors on healthy aging and age-related chronic diseases. We identified nicotinamide riboside, nicotinamide riboside co-administered with pterostilbene, and nicotinamide mononucleotide as the most common candidates in investigations of NAD+-boosting compounds for improving physiological function in humans. Studies have been performed in generally healthy midlife and older adults, adults with cardiometabolic disease risk factors such as overweight and obesity, and numerous patient populations. Supplementation with these compounds is safe, tolerable, and can increase the abundance of NAD+ and related metabolites in multiple tissues. Dosing regimens and study durations vary greatly across interventions, and small sample sizes limit data interpretation of physiological outcomes. Limitations are identified and future research directions are suggested to further our understanding of the potential efficacy of NAD+-boosting compounds for improving physiological function and extending human health span.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , Idoso , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Envelhecimento , Obesidade , Suplementos Nutricionais
7.
J Cardiopulm Rehabil Prev ; 43(3): 162-169, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656154

RESUMO

PURPOSE: This review overviews and highlights arterial stiffening as a key physiological process and target for the prevention and/or lowering of cardio- and cerebrovascular disease (collectively CVD) risk. METHODS: We identified nutraceutical approaches from randomized controlled trials and discussed the associated mechanisms by which these compounds lower age-related arterial stiffness. Age-related CVD are the leading cause of mortality in modernized societies. Arterial dysfunction, specifically stiffening of the large elastic arteries during midlife, is a key physiological process resulting in increased CVD risk. Current pharmaceutical approaches for lowering age-related arterial stiffness have limited efficacy, thus highlighting the need to identify novel approaches for lowering arterial stiffness and thereby CVD risk. Lifestyle interventions are a historical first-line approach to prevent and/or lower the adverse arterial stiffening effects observed with aging. Nutraceutical interventions, defined as a food or part of a food providing health benefits, are a nonpharmacological, novel lifestyle approach to lower age-associated arterial stiffness. Therefore, identifying nutraceutical approaches to lower CVD risk is clinically significant. SUMMARY: This review provides a basic, yet essential, understanding for emerging nutraceutical strategies for the prevention and therapeutic treatment of CVD.


Assuntos
Doenças Cardiovasculares , Transtornos Cerebrovasculares , Humanos , Envelhecimento/fisiologia , Artérias , Transtornos Cerebrovasculares/prevenção & controle , Suplementos Nutricionais , Coração , Doenças Cardiovasculares/terapia
8.
Neuroimage Clin ; 37: 103327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36682312

RESUMO

Hippocampal subfields (HCsf) are brain regions important for memory function that are vulnerable to decline with amnestic mild cognitive impairment (aMCI), which is often a preclinical stage of Alzheimer's disease. Studies in aMCI patients often assess HCsf tissue integrity using measures of volume, which has little specificity to microstructure and pathology. We use magnetic resonance elastography (MRE) to examine the viscoelastic mechanical properties of HCsf tissue, which is related to structural integrity, and sensitively detect differences in older adults with aMCI compared to an age-matched control group. Group comparisons revealed HCsf viscoelasticity is differentially affected in aMCI, with CA1-CA2 and DG-CA3 exhibiting lower stiffness and CA1-CA2 exhibiting higher damping ratio, both indicating poorer tissue integrity in aMCI. Including HCsf stiffness in a logistic regression improves classification of aMCI beyond measures of volume alone. Additionally, lower DG-CA3 stiffness predicted aMCI status regardless of DG-CA3 volume. These findings showcase the benefit of using MRE in detecting subtle pathological tissue changes in individuals with aMCI via the HCsf particularly affected in the disease.


Assuntos
Disfunção Cognitiva , Técnicas de Imagem por Elasticidade , Humanos , Idoso , Imageamento por Ressonância Magnética , Hipocampo/patologia , Encéfalo/diagnóstico por imagem
9.
Aging Cell ; 22(1): e13754, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515353

RESUMO

Declining nicotinamide adenine dinucleotide (NAD+ ) concentration in the brain during aging contributes to metabolic and cellular dysfunction and is implicated in the pathogenesis of aging-associated neurological disorders. Experimental therapies aimed at boosting brain NAD+ levels normalize several neurodegenerative phenotypes in animal models, motivating their clinical translation. Dietary intake of NAD+ precursors, such as nicotinamide riboside (NR), is a safe and effective avenue for augmenting NAD+ levels in peripheral tissues in humans, yet evidence supporting their ability to raise NAD+ levels in the brain or engage neurodegenerative disease pathways is lacking. Here, we studied biomarkers in plasma extracellular vesicles enriched for neuronal origin (NEVs) from 22 healthy older adults who participated in a randomized, placebo-controlled crossover trial (NCT02921659) of oral NR supplementation (500 mg, 2x /day, 6 weeks). We demonstrate that oral NR supplementation increases NAD+ levels in NEVs and decreases NEV levels of Aß42, pJNK, and pERK1/2 (kinases involved in insulin resistance and neuroinflammatory pathways). In addition, changes in NAD(H) correlated with changes in canonical insulin-Akt signaling proteins and changes in pERK1/2 and pJNK. These findings support the ability of orally administered NR to augment neuronal NAD+ levels and modify biomarkers related to neurodegenerative pathology in humans. Furthermore, NEVs offer a new blood-based window into monitoring the physiologic response of NR in the brain.


Assuntos
Vesículas Extracelulares , Doenças Neurodegenerativas , Idoso , Humanos , Biomarcadores , Vesículas Extracelulares/metabolismo , Insulina , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo
10.
J Neurosci ; 42(42): 7957-7968, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261271

RESUMO

Aging and neurodegenerative diseases lead to decline in thinking and memory ability. The subfields of the hippocampus (HCsf) play important roles in memory formation and recall. Imaging techniques sensitive to the underlying HCsf tissue microstructure can reveal unique structure-function associations and their vulnerability in aging and disease. The goal of this study was to use magnetic resonance elastography (MRE), a noninvasive MR imaging-based technique that can quantitatively image the viscoelastic mechanical properties of tissue to determine the associations of HCsf stiffness with different cognitive domains across the lifespan. Eighty-eight adult participants completed the study (age 23-81 years, male/female 36/51), in which we aimed to determine which HCsf regions most strongly correlated with different memory performance outcomes and if viscoelasticity of specific HCsf regions mediated the relationship between age and performance. Our results revealed that both interference cost on a verbal memory task and relational memory task performance were significantly related to cornu ammonis 1-2 (CA1-CA2) stiffness (p = 0.018 and p = 0.011, respectively), with CA1-CA2 stiffness significantly mediating the relationship between age and interference cost performance (p = 0.031). There were also significant associations between delayed free verbal recall performance and stiffness of both the dentate gyrus-cornu ammonis 3 (DG-CA3; p = 0.016) and subiculum (SUB; p = 0.032) regions. This further exemplifies the functional specialization of HCsf in declarative memory and the potential use of MRE measures as clinical biomarkers in assessing brain health in aging and disease.SIGNIFICANCE STATEMENT Hippocampal subfields are cytoarchitecturally unique structures involved in distinct aspects of memory processing. Magnetic resonance elastography is a technique that can noninvasively image tissue viscoelastic mechanical properties, potentially serving as sensitive biomarkers of aging and neurodegeneration related to functional outcomes. High-resolution in vivo imaging has invigorated interest in determining subfield functional specialization and their differential vulnerability in aging and disease. Applying MRE to probe subfield-specific cognitive correlates will indicate that measures of subfield stiffness can determine the integrity of structures supporting specific domains of memory performance. These findings will further validate our high-resolution MRE method and support the potential use of subfield stiffness measures as clinical biomarkers in classifying aging and disease states.


Assuntos
Hipocampo , Memória , Adulto , Humanos , Feminino , Masculino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Testes Neuropsicológicos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Cognição , Rememoração Mental , Imageamento por Ressonância Magnética/métodos
11.
Front Cardiovasc Med ; 9: 881703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620522

RESUMO

Background: Aging is the primary risk factor for cardiovascular diseases, the leading cause of death worldwide. Age-related increases in systolic blood pressure (SBP) link advancing age to cardiovascular disease risk. A key mechanism mediating the increase in SBP with aging is stiffening of the large elastic arteries, which occurs due to increases in oxidative stress, inflammation, and vascular smooth muscle tone. Nicotinamide adenine dinucleotide (NAD+) is a key molecule in energy metabolism and cellular functioning which declines with advancing age and chronic disease. Dietary supplementation with NAD+ precursors, such as nicotinamide riboside, boosts NAD+ bioavailability and may improve cardiovascular health. Here, we present the protocol for a randomized, controlled trial investigating the efficacy of 3 months of oral supplementation with nicotinamide riboside for decreasing SBP and arterial stiffness in midlife and older adults with initial above-normal (120-159 mmHg) SBP (ClinicalTrials.gov Identifier: NCT03821623). The primary outcome is casual (resting) SBP and secondary outcomes include 24-h SBP and aortic stiffness. Other outcomes include assessment of safety; tolerability; adherence; diastolic BP; systemic NAD+ bioavailability; and circulating biomarkers of oxidative stress, inflammation, and sympathoadrenal activity. Methods: A randomized, double-blind, placebo-controlled, single-site parallel-group design clinical trial will be conducted in 94 (47/group) midlife and older (age ≥ 50 years) adults with initial above-normal SBP. Participants will complete baseline testing and then will be randomized to either nicotinamide riboside (500 mg, 2×/day, NIAGEN®; ChromaDex Inc.) or placebo supplementation. Outcome measures will be assessed again after 3 months of treatment. Discussion: This study is designed to establish the safety and efficacy of the NAD+ boosting compound, nicotinamide riboside, for reducing casual and 24-h SBP and aortic stiffness in midlife and older adults with above-normal SBP at baseline, a population at increased risk of cardiovascular diseases. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03821623].

12.
Auton Neurosci ; 234: 102826, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058717

RESUMO

High dietary sodium impairs cerebral blood flow regulation in rodents and is associated with increased stroke risk in humans. However, the effects of multiple days of high dietary sodium on cerebral blood flow regulation in humans is unknown. Therefore, the purpose of this study was to determine whether ten days of high dietary sodium impairs cerebral blood flow regulation. Ten participants (3F/7M; age: 30 ± 10 years; blood pressure (BP): 113 ± 8/62 ± 9 mmHg) participated in this randomized, cross-over design study. Participants were placed on 10-day diets that included either low- (1000 mg/d), medium- (2300 mg/d) or high- (7000 mg/d) sodium separated by ≥four weeks. Urinary sodium excretion, beat-to-beat BP (finger photoplethysmography), middle cerebral artery velocity (transcranial Doppler), and end-tidal carbon dioxide (capnography) was measured. Dynamic cerebral autoregulation during a ten-minute baseline was calculated and cerebrovascular reactivity assessed by determining the percent change in middle cerebral artery blood flow velocity to hypercapnia (8% CO2, 21% oxygen, balance nitrogen) and hypocapnia (via mild hyperventilation). Urinary sodium excretion increased in a stepwise manner (ANOVA P = 0.001) from the low, to medium, to high condition. There were no differences in dynamic cerebral autoregulation between conditions. While there was a trend for a difference during cerebrovascular reactivity to hypercapnia (ANOVA P = 0.06), this trend was abolished when calculating cerebrovascular conductance (ANOVA: P = 0.28). There were no differences in cerebrovascular reactivity (ANOVA P = 0.57) or conductance (ANOVA: P = 0.73) during hypocapnia. These data suggest that ten days of a high sodium diet does not impair cerebral blood flow regulation in healthy adults.


Assuntos
Sódio na Dieta , Adulto , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Dióxido de Carbono , Circulação Cerebrovascular , Dieta , Humanos , Hipercapnia , Hipocapnia , Ultrassonografia Doppler Transcraniana
13.
Cereb Cortex ; 31(6): 2799-2811, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33454745

RESUMO

Age-related memory impairments have been linked to differences in structural brain parameters, including the integrity of the hippocampus (HC) and its distinct hippocampal subfields (HCsf). Imaging methods sensitive to the underlying tissue microstructure are valuable in characterizing age-related HCsf structural changes that may relate to cognitive function. Magnetic resonance elastography (MRE) is a noninvasive MRI technique that can quantify tissue viscoelasticity and may provide additional information about aging effects on HCsf health. Here, we report a high-resolution MRE protocol to quantify HCsf viscoelasticity through shear stiffness, µ, and damping ratio, ξ, which reflect the integrity of tissue composition and organization. HCsf exhibit distinct mechanical properties-the subiculum had the lowest µ and both subiculum and entorhinal cortex had the lowest ξ. Both measures correlated with age: HCsf µ was lower with age (P < 0.001) whereas ξ was higher (P = 0.002). The magnitude of age-related differences in ξ varied across HCsf (P = 0.011), suggesting differential patterns of brain aging. This study demonstrates the feasibility of using MRE to assess HCsf microstructural integrity and suggests incorporation of these metrics to evaluate HC health in neurocognitive disorders.


Assuntos
Envelhecimento/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Viscosidade , Adulto Jovem
14.
J Cereb Blood Flow Metab ; 41(6): 1417-1427, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33103936

RESUMO

Age-related memory loss shares similar risk factors as cardiometabolic diseases including elevated serum triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C) and reduced high-density lipoprotein cholesterol (HDL-C). The mechanisms linking these aberrant blood lipids to memory loss are not completely understood but may be partially mediated by reduced integrity of the hippocampus (HC), the primary brain structure for encoding and recalling memories. In this study, we tested the hypothesis that blood lipid markers are independently associated with memory performance and HC viscoelasticity-a noninvasive measure of brain tissue microstructural integrity assessed by high-resolution magnetic resonance elastography (MRE). Twenty-six individuals across the adult lifespan were recruited (14 M/12 F; mean age: 42 ± 15 y; age range: 22-78 y) and serum lipid profiles were related to episodic memory and HC viscoelasticity. All subjects were generally healthy without clinically abnormal blood lipids or memory loss. Episodic memory was negatively associated with the TG/HDL-C ratio. HC viscoelasticity was negatively associated with serum TGs and the TG/HDL-C ratio, independent of age and in the absence of associations with HC volume. These data, although cross-sectional, suggest that subtle differences in blood lipid profiles in healthy adults may contribute to a reduction in memory function and HC tissue integrity.


Assuntos
Biomarcadores/sangue , Hipocampo/metabolismo , Lipídeos/sangue , Memória Episódica , Adulto , Idoso , Estudos Transversais , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Physiol Rep ; 8(19): e14585, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038066

RESUMO

A high sodium (Na+ ) meal impairs peripheral vascular function. In rodents, chronic high dietary Na+ impairs cerebral vascular function, and in humans, habitual high dietary Na+ is associated with increased stroke risk. However, the effects of acute high dietary Na+ on the cerebral vasculature in humans are unknown. The purpose of this study was to determine if acute high dietary Na+ impairs cerebrovascular reactivity in healthy adults. Thirty-seven participants (20F/17M; 25 ± 5 years; blood pressure [BP]: 107 ± 9/61 ± 6 mm Hg) participated in this randomized, cross-over study. Participants were given a low Na+ meal (LSM; 138 mg Na+ ) and a high Na+ meal (HSM; 1,495 mg Na+ ) separated by ≥ one week. Serum Na+ , beat-to-beat BP, middle cerebral artery velocity (transcranial Doppler), and end-tidal carbon dioxide (PET CO2 ) were measured pre- (baseline) and 60 min post-prandial. Cerebrovascular reactivity was assessed by determining the percent change in middle cerebral artery velocity to hypercapnia (via 8% CO2 , 21% oxygen, balance nitrogen) and hypocapnia (via mild hyperventilation). Peripheral vascular function was measured using brachial artery flow-mediated dilation (FMD). Changes in serum Na+ were greater following the HSM (HSM: Δ1.6 ± 1.2 mmol/L vs. LSM: Δ0.7 ± 1.2 mmol/L, p < .01). Cerebrovascular reactivity to hypercapnia (meal effect: p = .41) and to hypocapnia (meal effect: p = .65) were not affected by the HSM. Contrary with previous findings, FMD was not reduced following the HSM (meal effect: p = .74). These data suggest that a single high Na+ meal does not acutely impair cerebrovascular reactivity, and suggests that despite prior findings, a single high Na+ meal does not impair peripheral vascular function in healthy adults.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Hipocapnia/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Cloreto de Sódio na Dieta/farmacologia , Adolescente , Adulto , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Artéria Braquial/efeitos dos fármacos , Dióxido de Carbono/sangue , Estudos Cross-Over , Feminino , Humanos , Hipercapnia/fisiopatologia , Masculino , Artéria Cerebral Média/fisiologia , Adulto Jovem
16.
Am J Physiol Heart Circ Physiol ; 319(2): H481-H487, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32678706

RESUMO

Modifiable cardiometabolic risk factors induce the release of proinflammatory cytokines and reactive oxygen species from circulating peripheral blood mononuclear cells (PBMCs), resulting in increased cardiovascular disease risk and compromised immune health. These changes may be driven by metabolic reprogramming of PBMCs, resulting in reduced mitochondrial respiration; however, this has not been fully tested. We aimed to determine the independent associations between cardiometabolic risk factors including BMI, blood pressure, fasting glucose, and plasma lipids with mitochondrial respiration in PBMCs isolated from generally healthy individuals (n = 21) across the adult lifespan (12 men/9 women; age, 56 ± 21 yr; age range, 22-78 yr; body mass index, 27.9 ± 5.7 kg/m2; blood pressure, 123 ± 16/72 ± 10 mmHg; glucose, 90 ± 14 mg/dL; low-density lipoprotein cholesterol (LDL-C), 111 ± 22 mg/dL; and high-density lipoprotein cholesterol (HDL-C), 62 ± 16 mg/dL). PBMCs were isolated from whole blood by density-dependent centrifugation and used to assess mitochondrial function by respirometry. Primary outcomes included basal and maximal oxygen consumption rate (OCR), which were subsequently used to determine spare respiratory capacity and OCR metabolic potential. After we corrected for systolic blood pressure (SBP), diastolic blood pressure (DBP), and blood glucose, LDL-C was negatively associated with maximal respiration (r = -0.56, P = 0.016), spare respiratory capacity (r = -0.58, P = 0.012), and OCR metabolic potential (r = -0.71, P = 0.0011). In addition, SBP was negatively associated with OCR metabolic potential (r = -0.62, P = 0.0056) after we corrected for DBP, blood glucose, and LDL-C. These data suggest a link between blood cholesterol, SBP, and mitochondrial health that may provide insight into how cardiometabolic risk factors contribute to impaired immune cell function.NEW & NOTEWORTHY Independent of other cardiometabolic risk factors, low-density lipoprotein cholesterol, and systolic blood pressure were found to be negatively associated with several parameters of mitochondrial respiration in peripheral blood mononuclear cells of healthy adults. These data suggest that low-density lipoprotein cholesterol and systolic blood pressure may induce metabolic reprogramming of immune cells, contributing to increased cardiovascular disease risk and impaired immune health.


Assuntos
Pressão Sanguínea , Respiração Celular , LDL-Colesterol/sangue , Leucócitos Mononucleares/metabolismo , Síndrome Metabólica/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Glicemia/análise , Índice de Massa Corporal , Jejum/sangue , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/imunologia , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Consumo de Oxigênio , Fatores de Risco , Adulto Jovem
17.
J Am Heart Assoc ; 9(10): e015633, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32406312

RESUMO

Background High sodium (Na+) intake is a widespread cardiovascular disease risk factor. High Na+ intake impairs endothelial function and exaggerates sympathetic reflexes, which may augment exercising blood pressure (BP) responses. Therefore, this study examined the influence of high dietary Na+ on BP responses during submaximal aerobic exercise. Methods and Results Twenty adults (8F/12M, age=24±4 years; body mass index 23.0±0.6 kg·m-2; VO2peak=39.7±9.8 mL·min-1·kg-1; systolic BP=111±10 mm Hg; diastolic BP=64±8 mm Hg) participated in this randomized, double-blind, placebo-controlled crossover study. Total Na+ intake was manipulated via ingestion of capsules containing either a placebo (dextrose) or table salt (3900 mg Na+/day) for 10 days each, separated by ≥2 weeks. On day 10 of each intervention, endothelial function was assessed via flow-mediated dilation followed by BP measurement at rest and during 50 minutes of cycling at 60% VO2peak. Throughout exercise, BP was assessed continuously via finger photoplethysmography and every 5 minutes via auscultation. Venous blood samples were collected at rest and during the final 10 minutes of exercise for assessment of norepinephrine. High Na+ intake increased urinary Na+ excretion (placebo=140±68 versus Na+=282±70 mmol·24H-1; P<0.001) and reduced flow-mediated dilation (placebo=7.2±2.4 versus Na+=4.2±1.7%; P<0.001). Average exercising systolic BP was augmented following high Na+ (placebo=Δ30.0±16.3 versus Na+=Δ38.3±16.2 mm Hg; P=0.03) and correlated to the reduction in flow-mediated dilation (R=-0.71, P=0.002). Resting norepinephrine concentration was not different between conditions (P=0.82). Norepinephrine increased during exercise (P=0.002), but there was no Na+ effect (P=0.26). Conclusions High dietary Na+ augments BP responses during submaximal aerobic exercise, which may be mediated, in part, by impaired endothelial function.


Assuntos
Pressão Arterial , Artéria Braquial/fisiopatologia , Endotélio Vascular/fisiopatologia , Exercício Físico , Cloreto de Sódio na Dieta/efeitos adversos , Vasodilatação , Adulto , Biomarcadores/sangue , Delaware , Método Duplo-Cego , Feminino , Humanos , Masculino , Natriurese , Norepinefrina/sangue , Fatores de Tempo , Adulto Jovem
18.
Geroscience ; 42(2): 667-686, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975053

RESUMO

Chronic calorie restriction (CR) improves cardiovascular function and several other physiological markers of healthspan. However, CR is impractical in non-obese older humans due to potential loss of lean mass and bone density, poor adherence, and risk of malnutrition. Time-restricted feeding (TRF), which limits the daily feeding period without requiring a reduction in calorie intake, may be a promising alternative healthspan-extending strategy for midlife and older adults; however, there is limited evidence for its feasibility and efficacy in humans. We conducted a randomized, controlled pilot study to assess the safety, tolerability, and overall feasibility of short-term TRF (eating <8 h day-1 for 6 weeks) without weight loss in healthy non-obese midlife and older adults, while gaining initial insight into potential efficacy for improving cardiovascular function and other indicators of healthspan. TRF was safe and well-tolerated, associated with excellent adherence and reduced hunger, and did not influence lean mass, bone density, or nutrient intake. Cardiovascular function was not enhanced by short-term TRF in this healthy cohort, but functional (endurance) capacity and glucose tolerance were modestly improved. These results provide a foundation for conducting larger clinical studies of TRF in midlife and older adults, including trials with a longer treatment duration.


Assuntos
Restrição Calórica , Jejum , Idoso , Sistema Cardiovascular , Ingestão de Energia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
19.
Med Sci Sports Exerc ; 52(4): 935-943, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31609296

RESUMO

INTRODUCTION: High salt intake is a widespread cardiovascular risk factor with systemic effects. These effects include an expansion of plasma volume, which may interfere with postexercise hypotension (PEH). However, the effects of high salt intake on central and peripheral indices of PEH remain unknown. We tested the hypothesis that high salt intake would attenuate central and peripheral PEH. METHODS: Nineteen healthy adults (7 female/12 male; age, 25 ± 4 yr; body mass index, 23.3 ± 2.2 kg·m; V[Combining Dot Above]O2peak, 41.6 ± 8.7 mL·min·kg; systolic blood pressure (BP), 112 ± 9 mm Hg; diastolic BP, 65 ± 9 mm Hg) participated in this double-blind, randomized, placebo-controlled crossover study. Participants were asked to maintain a 2300 mg·d sodium diet for 10 d on two occasions separated by ≥2 wk. Total salt intake was manipulated via ingestion of capsules containing either table salt (3900 mg·d) or placebo (dextrose) during each diet. On the 10th day, participants completed 50 min of cycling at 60% V[Combining Dot Above]O2peak. A subset of participants (n = 8) completed 60 min of seated rest (sham trial). Beat-to-beat BP was measured in-laboratory for 60 min after exercise via finger photoplethysmography. Brachial and central BPs were measured for 24 h after exercise via ambulatory BP monitor. RESULTS: Ten days of high salt intake increased urinary sodium excretion (134 ± 70 (dextrose) vs 284 ± 74 mmol per 24 h (salt), P < 0.001), expanded plasma volume (7.2% ± 10.8%), and abolished PEH during in-laboratory BP monitoring (main effect of diet, P < 0.001). Ambulatory systolic BPs were higher for 12 h after exercise during the salt and sham trials compared with the dextrose trial (average change, 3.6 ± 2.1 mm Hg (dextrose), 9.9 ± 1.4 mm Hg (salt), 9.8 ± 2.5 mm Hg (sham); P = 0.01). Ambulatory central systolic BP was also higher during the salt trial compared with dextrose trial. CONCLUSION: High salt intake attenuates peripheral and central PEH, potentially reducing the beneficial cardiovascular effects of acute aerobic exercise.


Assuntos
Hipotensão Pós-Exercício/fisiopatologia , Sódio na Dieta/administração & dosagem , Adulto , Pressão Sanguínea/fisiologia , Volume Sanguíneo/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Hipotensão Pós-Exercício/urina , Sódio/urina , Adulto Jovem
20.
Geroscience ; 41(6): 895-906, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31707594

RESUMO

Chronological age is an important predictor of morbidity and mortality; however, it is unable to account for heterogeneity in the decline of physiological function and health with advancing age. Several attempts have been made to instead define a "biological age" using multiple physiological parameters in order to account for variation in the trajectory of human aging; however, these methods require technical expertise and are likely too time-intensive and costly to be implemented into clinical practice. Accordingly, we sought to develop a metabolomic signature of biological aging that could predict changes in physiological function with the convenience of a blood sample. A weighted model of biological age was generated based on multiple clinical and physiological measures in a cohort of healthy adults and was then applied to a group of healthy older adults who were tracked longitudinally over a 5-10-year timeframe. Plasma metabolomic signatures were identified that were associated with biological age, including some that could predict whether individuals would age at a faster or slower rate. Metabolites most associated with the rate of biological aging included amino acid, fatty acid, acylcarnitine, sphingolipid, and nucleotide metabolites. These results not only have clinical implications by providing a simple blood-based assay of biological aging, but also provide insight into the molecular mechanisms underlying human healthspan.


Assuntos
Envelhecimento/sangue , Aminoácidos/sangue , Ácidos Graxos/sangue , Nível de Saúde , Metabolômica/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...