Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 3730, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24769498

RESUMO

The field of metamaterial research revolves around the idea of creating artificial media that interact with light in a way unknown from naturally occurring materials. This is commonly achieved using sub-wavelength lattices of electronic or plasmonic structures, so-called meta-atoms. One of the ultimate goals for these tailored media is the ability to control their properties in situ. Here we show that superconducting quantum interference devices can be used as fast, switchable meta-atoms. We find that their intrinsic nonlinearity leads to simultaneously stable dynamic states, each of which is associated with a different value and sign of the magnetic susceptibility in the microwave domain. Moreover, we demonstrate that it is possible to switch between these states by applying nanosecond-long pulses in addition to the microwave-probe signal. Apart from potential applications for this all-optical metamaterial switch, the results suggest that multistability can also be utilized in other types of nonlinear meta-atoms.


Assuntos
Condutividade Elétrica , Modelos Químicos , Nanoestruturas , Micro-Ondas , Teoria Quântica
2.
Phys Rev Lett ; 109(9): 090401, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002813

RESUMO

We describe a new mechanism of tunneling between period-two vibrational states of a weakly nonlinear, parametrically modulated oscillator. The tunneling results from resonant transitions induced by the fast oscillating terms conventionally disregarded in the rotating wave approximation (RWA). The tunneling amplitude displays resonant peaks as a function of the modulation frequency; near the maxima it is exponentially larger than the RWA tunneling amplitude.

3.
Phys Rev Lett ; 107(9): 093901, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21929242

RESUMO

We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit can lead to a lasing state of the oscillator. Here we show that the circuit can also exhibit the effect of "lasing without inversion." It arises since the coupling to the dissipative environment enhances photon emission as compared to absorption, similar to the recoil effect predicted for atomic systems. While the recoil effect is very weak, and so far elusive, the effect described here should be observable with realistic circuits. We analyze the requirements for system parameters and environment.

4.
Phys Rev Lett ; 101(14): 147001, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18851559

RESUMO

A superconducting single-electron transistor (SSET) coupled to an anharmonic oscillator, e.g., a Josephson junction-L-C circuit, can drive the latter to a nonequilibrium photon-number distribution. By biasing the SSET at the Josephson quasiparticle cycle, cooling of the oscillator as well as a laserlike enhancement of the photon number can be achieved. Here, we show that the cutoff in the quasiparticle tunneling rate due to the superconducting gap, in combination with the anharmonicity of the oscillator, may create strongly squeezed photon-number distributions. For low dissipation in the oscillator, nearly pure Fock states can be produced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA