Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 15(9): 4764-4780, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31403781

RESUMO

One of the most important application areas of molecular quantum chemistry is the study and prediction of chemical reactivity. Large-scale, fully error-tolerant quantum computers could provide exact or near-exact solutions to the underlying electronic structure problem with exponentially less effort than a classical computer thus enabling highly accurate predictions for comparably large molecular systems. In the nearer future, however, only "noisy" devices with a limited number of qubits that are subject to decoherence will be available. For such near-term quantum computers the hybrid quantum-classical variational quantum eigensolver algorithm in combination with the unitary coupled-cluster ansatz (UCCSD-VQE) [ Peruzzo et al. Nat. Commun. 2014 , 5 , 4213 and McClean et al. New J. Phys. 2016 , 18 , 023023 ] has become an intensively discussed approach that could provide accurate results before the dawn of error-tolerant quantum computing. In this work we present an implementation of UCCSD-VQE that allows for the first time to treat both open- and closed-shell molecules. We study the accuracy of the obtained energies for nine small molecular systems as well as for four exemplary chemical reactions by comparing to well-established electronic structure methods like (nonunitary) coupled-cluster and density functional theory. Finally, we roughly estimate the required quantum hardware resources to obtain "useful" results for practical purposes.

2.
Phys Rev Lett ; 119(24): 240502, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286716

RESUMO

We study an analog quantum simulator coupled to a reservoir with a known spectral density. The reservoir perturbs the quantum simulation by causing decoherence. The simulator is used to measure an operator average, which cannot be calculated using any classical means. Since we cannot predict the result, it is difficult to estimate the effect of the environment. Especially, it is difficult to resolve whether the perturbation is small or if the actual result of the simulation is in fact very different from the ideal system we intend to study. Here, we show that in specific systems a measurement of additional correlators can be used to verify the reliability of the quantum simulation. The procedure only requires additional measurements on the quantum simulator itself. We demonstrate the method theoretically in the case of a single spin connected to a bosonic environment.

3.
Nat Commun ; 8(1): 779, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974675

RESUMO

The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

4.
Sci Rep ; 6: 23786, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030167

RESUMO

Recent progress with microfabricated quantum devices has revealed that an ubiquitous source of noise originates in tunneling material defects that give rise to a sparse bath of parasitic two-level systems (TLSs). For superconducting qubits, TLSs residing on electrode surfaces and in tunnel junctions account for a major part of decoherence and thus pose a serious roadblock to the realization of solid-state quantum processors. Here, we utilize a superconducting qubit to explore the quantum state evolution of coherently operated TLSs in order to shed new light on their individual properties and environmental interactions. We identify a frequency-dependence of TLS energy relaxation rates that can be explained by a coupling to phononic modes rather than by anticipated mutual TLS interactions. Most investigated TLSs are found to be free of pure dephasing at their energy degeneracy points, around which their Ramsey and spin-echo dephasing rates scale linearly and quadratically with asymmetry energy, respectively. We provide an explanation based on the standard tunneling model, and identify interaction with incoherent low-frequency (thermal) TLSs as the major mechanism of the pure dephasing in coherent high-frequency TLS.

5.
Phys Rev Lett ; 115(2): 027004, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207498

RESUMO

We demonstrate theoretically that charge transport across a Josephson junction, voltage-biased through a resistive environment, produces antibunched photons. We develop a continuous-mode description of the emitted radiation field in a semi-infinite transmission line terminated by the Josephson junction. Within a perturbative treatment in powers of the tunneling coupling across the Josephson junction, we capture effects originating in charging dynamics of consecutively tunneling Cooper pairs. We find that within a feasible experimental setup the Coulomb blockade provided by high zero-frequency impedance can be used to create antibunched photons at a very high rate and in a very versatile frequency window ranging from a few GHz to a THz.

6.
Phys Rev Lett ; 113(23): 236801, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526146

RESUMO

We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω, above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry.

7.
Nat Commun ; 5: 5146, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25312205

RESUMO

The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.

8.
Phys Rev Lett ; 111(20): 205303, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289695

RESUMO

A novel way to create a band structure of the quasienergy spectrum for driven systems is proposed based on the discrete symmetry in phase space. The system, e.g., an ion or ultracold atom trapped in a potential, shows no spatial periodicity, but it is driven by a time-dependent field coupling highly nonlinearly to one of its degrees of freedom (e.g., ∼q(n)). The band structure in quasienergy arises as a consequence of the n-fold discrete periodicity in phase space induced by this driving field. We propose an explicit model to realize such a phase space crystal and analyze its band structure in the frame of a tight-binding approximation. The phase space crystal opens new ways to engineer energy band structures, with the added advantage that its properties can be changed in situ by tuning the driving field's parameters.

9.
Nature ; 503(7475): 242-6, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24226888

RESUMO

Single magnetic atoms, and assemblies of such atoms, on non-magnetic surfaces have recently attracted attention owing to their potential use in high-density magnetic data storage and as a platform for quantum computing. A fundamental problem resulting from their quantum mechanical nature is that the localized magnetic moments of these atoms are easily destabilized by interactions with electrons, nuclear spins and lattice vibrations of the substrate. Even when large magnetic fields are applied to stabilize the magnetic moment, the observed lifetimes remain rather short (less than a microsecond). Several routes for stabilizing the magnetic moment against fluctuations have been suggested, such as using thin insulating layers between the magnetic atom and the substrate to suppress the interactions with the substrate's conduction electrons, or coupling several magnetic moments together to reduce their quantum mechanical fluctuations. Here we show that the magnetic moments of single holmium atoms on a highly conductive metallic substrate can reach lifetimes of the order of minutes. The necessary decoupling from the thermal bath of electrons, nuclear spins and lattice vibrations is achieved by a remarkable combination of several symmetries intrinsic to the system: time reversal symmetry, the internal symmetries of the total angular momentum and the point symmetry of the local environment of the magnetic atom.

10.
Phys Rev Lett ; 110(26): 267004, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848913

RESUMO

We investigate electromagnetic radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. At frequencies below the well-known emission peak at the Josephson frequency (2eV/h), extra radiation is triggered by quantum fluctuations in the transmission line. For weak tunneling couplings and typical Ohmic transmission lines, the corresponding photon-flux spectrum is symmetric around half the Josephson frequency, indicating that the photons are predominately created in pairs. By establishing an input-output formalism for the microwave field in the transmission line, we give further evidence for this nonclassical photon pair production, demonstrating that it violates the classical Cauchy-Schwarz inequality for two-mode flux cross correlations. In connection to recent experiments, we also consider a stepped transmission line, where resonances increase the signal-to-noise ratio.

11.
Phys Rev Lett ; 108(19): 190506, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003017

RESUMO

We propose a mechanism for coupling spin qubits formed in double quantum dots to a superconducting transmission line resonator. Coupling the resonator to the gate controlling the interdot tunneling creates a spin qubit-resonator interaction with a strength of tens of MHz. This mechanism allows operating the system at a symmetry point where decoherence due to charge noise is minimized. The transmission line can serve as the shuttle, allowing for fast two-qubit operations including the generation of qubit-qubit entanglement and the implementation of a controlled-phase gate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...