Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0284058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561713

RESUMO

We report a waveguide-enhanced Raman spectroscopy (WERS) platform with alignment-tolerant under-chip grating input coupling. The demonstration is based on a 100-nm thick planar (slab) tantalum pentoxide (Ta2O5) waveguide and the use of benzyl alcohol (BnOH) and its deuterated form (d7- BnOH) as reference analytes. The use of grating couplers simplifies the WERS system by providing improved translational alignment tolerance, important for disposable chips, as well as contributing to improved Raman conversion efficiency. The use of non-volatile, non-toxic BnOH and d7-BnOH as chemical analytes results in easily observable shifts in the Raman vibration lines between the two forms, making them good candidates for calibrating Raman systems. The design and fabrication of the waveguide and grating couplers are described, and a discussion of further potential improvements in performance is presented.


Assuntos
Análise Espectral Raman , Álcool Benzílico
2.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055260

RESUMO

Affinity sensing of nucleic acids is among the most investigated areas in biosensing due to the growing importance of DNA diagnostics in healthcare research and clinical applications. Here, we report a simple electrochemical DNA detection layer, based on poly-l-lysine (PLL), in combination with gold nanoparticles (AuNPs) as a signal amplifier. The layer shows excellent reduction of non-specific binding and thereby high contrast between amplified and non-amplified signals with functionalized AuNPs; the relative change in current was 10-fold compared to the non-amplified signal. The present work may provide a general method for the detection of tumor markers based on electrochemical DNA sensing.

3.
ACS Sens ; 6(6): 2025-2045, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34114813

RESUMO

Waveguide enhanced Raman spectroscopy (WERS) utilizes simple, robust, high-index contrast dielectric waveguides to generate a strong evanescent field, through which laser light interacts with analytes residing on the surface of the waveguide. It offers a powerful tool for the direct identification and reproducible quantification of biochemical species and an alternative to surface enhanced Raman spectroscopy (SERS) without reliance on fragile noble metal nanostructures. The advent of low-cost laser diodes, compact spectrometers, and recent progress in material engineering, nanofabrication techniques, and software modeling tools have made realizing portable and cheap WERS Raman systems with high sensitivity a realistic possibility. This review highlights the latest progress in WERS technology and summarizes recent demonstrations and applications. Following an introduction to the fundamentals of WERS, the theoretical framework that underpins the WERS principles is presented. The main WERS design considerations are then discussed, and a review of the available approaches for the modification of waveguide surfaces for the attachment of different biorecognition elements is provided. The review concludes by discussing and contrasting the performance of recent WERS implementations, thereby providing a future roadmap of WERS technology where the key opportunities and challenges are highlighted.


Assuntos
Nanoestruturas , Análise Espectral Raman , Luz , Refratometria
4.
ACS Sens ; 6(6): 2307-2319, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032412

RESUMO

Standard protocols for the analysis of circulating tumor DNA (ctDNA) include the isolation of DNA from the patient's plasma and its amplification and analysis in buffered solutions. The application of such protocols is hampered by several factors, including the complexity and time-constrained preanalytical procedures, risks for sample contamination, extended analysis time, and assay costs. A recently introduced nanoparticle-enhanced surface plasmon resonance imaging-based assay has been shown to simplify procedures for the direct detection of tumor DNA in the patient's plasma, greatly simplifying the cumbersome preanalytical phase. To further simplify the protocol, a new dual-functional low-fouling poly-l-lysine (PLL)-based surface layer has been introduced that is described herein. The new PLL-based layer includes a densely immobilized CEEEEE oligopeptide to create a charge-balanced system preventing the nonspecific adsorption of plasma components on the sensor surface. The layer also comprises sparsely attached peptide nucleic acid probes complementary to the sequence of circulating DNA, e.g., the analyte that has to be captured in the plasma from cancer patients. We thoroughly investigated the contribution of each component of the dual-functional polymer to the antifouling properties of the surface layer. The low-fouling property of the new surface layer allowed us to detect wild-type and KRAS p.G12D-mutated DNA in human plasma at the attomolar level (∼2.5 aM) and KRAS p.G13D-mutated tumor DNA in liquid biopsy from a cancer patient with almost no preanalytical treatment of the patient's plasma, no need to isolate DNA from plasma, and without PCR amplification of the target sequence.


Assuntos
Neoplasias , Ácidos Nucleicos Peptídicos , DNA/genética , Humanos , Lisina , Neoplasias/genética , Ressonância de Plasmônio de Superfície
5.
Eur J Neurol ; 28(10): 3426-3436, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33417287

RESUMO

BACKGROUND AND PURPOSE: Headache is an important manifestation during SARS-CoV-2 infection. In this study, the aim was to identify factors associated with headache in COVID-19 and headache characteristics. METHODS: This case-control study includes COVID-19 hospitalized patients with pneumonia during March 2020. Controls comprise COVID-19 patients without headache and the cases are COVID-19 patients with headache. Demographic, clinical and laboratory data were obtained from the medical records. Headache characteristics were evaluated by semi-structured telephonic interview after discharge. RESULTS: Of a total of 379 COVID-19 patients, 48 (13%) developed headache. Amongst these, 30 (62%) were men and the median age was 57.9 (47-73) years. Headache was associated with younger age, fewer comorbidities and reduced mortality, as well as with low levels of C-reactive protein, mild acute respiratory distress syndrome and oropharyngeal symptoms. A logistic multiple regression model revealed that headache was directly associated with D-dimer and creatinine levels, the use of high flow nasal cannula and arthromyalgia, whilst urea levels, beta-lactamic treatment and hypertension were negatively associated with headache. COVID-19-associated headache characteristics were available for 23/48 (48%) patients. Headache was the onset symptom in 8/20 (40%) patients, of mild or moderate intensity in 17/20 (85%) patients, with oppressive characteristics in 17/18 (94%) and of holocranial 8/19 (42%) or temporal 7/19 (37%) localization. CONCLUSIONS: Our results show that headache is associated with a more benign SARS-CoV-2 infection. COVID-19-associated headache appears as an early symptom and as a novel headache with characteristics of headache attributed to systemic viral infection. Further research addressing the underlying mechanisms to confirm these findings is warranted.


Assuntos
COVID-19 , SARS-CoV-2 , Estudos de Casos e Controles , Comorbidade , Cefaleia/epidemiologia , Cefaleia/etiologia , Humanos , Masculino , Pessoa de Meia-Idade
6.
RSC Adv ; 9(61): 35608-35613, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35528089

RESUMO

Biomolecules are immobilized onto surfaces employing the fast and stable adsorption of poly-l-lysine (PLL) polymers and the versatile copper-free click chemistry reactions. This method provides the combined advantages of versatile surface adsorption with density control using polyelectrolytes and of the covalent and orthogonal immobilization of biomolecules with higher reaction rates and improved yields of click chemistry. Using DNA attachment as a proof of concept, control over the DNA probe density and applicability in electrochemical detection are presented.

7.
J Mater Chem B ; 6(46): 7662-7673, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254888

RESUMO

Biosensors and biomedical devices require antifouling surfaces to prevent the non-specific adhesion of proteins or cells, for example, when aiming to detect circulating cancer biomarkers in complex natural media (e.g., in blood plasma or serum). A mixed-charge polymer was prepared by the coupling of a cationic polyelectrolyte and an anionic oligopeptide through a modified "grafting-to" method. The poly-l-lysine (PLL) backbone was modified with different percentages (y%) of maleimide-NHS ester chains (PLL-mal(y%), from 13% to 26%), to produce cationic polymers with specific grafting densities, obtaining a mixed-charge polymer. The anionic oligopeptide structure (CEEEEE) included one cysteine (C) and five glutamic acid (E) units, which were attached to the PLL-mal(y%) polymers, preadsorbed on gold substrates, through the thiol-maleimide Michael-type addition. Contact angle and PM-IRRAS data confirmed monolayer formation of the modified PLLs. Antifouling properties of peptide-PLL surfaces were assessed in adsorption studies using quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance imaging (SPRI) techniques. PLL-mal(26%)-CEEEEE showed the best antifouling performance in single-protein solutions, and the nonspecific adsorption of proteins was 46 ng cm-2 using diluted human plasma samples. The new PLL-mal(26%)-CEEEEE polymer offers a prominent low-fouling activity in complex media, with rapid and simple procedures for the synthesis and functionalization of the surface compared to conventional non-fouling materials.

8.
Chem Commun (Camb) ; 51(15): 3077-9, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25613775

RESUMO

A new colorimetric system for NO(g) detection is described. The detection method is based on the aggregation of modified AuNPs through a Cu(I) catalyzed click reaction promoted by the in situ reduction of Cu(II) by NO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...