Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Air Med J ; 41(1): 88-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248351

RESUMO

In March 2020, coronavirus disease 2019 (COVID-19) caused an overwhelming pandemic. To relieve overloaded intensive care units in the most affected regions, the French Ministry of Defence triggered collective air medical evacuations (medevacs) on board an Airbus A330 Multi Role Tanker Transport of the French Air Force. Such a collective air medevac is a big challenge regarding biosafety; until now, only evacuations of a single symptomatic patient with an emergent communicable disease, such as Ebola virus disease, have been conducted. However, the COVID-19 pandemic required collective medevacs for critically ill patients and involved a virus that little is known about still. Thus, we performed a complete risk analysis using a process map and FMECA (Failure Modes, Effects and Criticality Analysis) to assess the risk and implement mitigation measures for health workers, flight crew, and the environment. We report the biosafety management experienced during 6 flights with a total of 36 critically ill COVID-19-positive patients transferred with no casualties while preserving both staffs and aircraft.


Assuntos
Resgate Aéreo , COVID-19 , Contenção de Riscos Biológicos , Estado Terminal/terapia , Humanos , Pandemias , Medição de Risco , SARS-CoV-2
2.
Radiat Res ; 190(2): 176-185, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29215325

RESUMO

DosiKit is a new field-radiation biodosimetry immunoassay for rapid triage of individuals exposed to external total-body irradiation. Here, we report on the validation of this immunoassay in human blood cell extracts 0.5 h after in vitro exposure to 137Cs gamma rays, using γ-H2AX analysis. First, calibration curves were established for five donors at doses ranging from 0 to 10 Gy and dose rates ranging from ∼0.8 to ∼3 Gy/min. The calibration curves, together with a γ-H2AX peptide scale, enabled the definition of inter-experimental correction factors. Using previously calculated correction factors, blind dose estimations were performed at 0.5 h postirradiation, and DosiKit performance was compared against concomitant dicentric chromosome assay (DCA), the current gold standard for external irradiation biodosimetry. A prototype was then assembled and field tested. We show that, despite significant inter-individual variations, DosiKit can estimate total-body irradiation doses from 0.5 to 10 Gy with a strong linear dose-dependent signal and can be used to classify potentially exposed individuals into three dose ranges: below 2 Gy, between 2 and 5 Gy and above 5 Gy. The entire protocol can be performed in 45 min, from sampling to dose estimation, with a new patient triaged every 10 min. While DCA enables precise measurement of doses below 5 Gy, it is a long and difficult method. In contrast, DosiKit is a quick test that can be performed directly in the field by operational staff with minimal training, and is relevant for early field triage and identification of individuals most likely to experience acute radiation syndrome. These findings suggest that DosiKit and DCA are complementary and should be combined for triage in a mass scale event. While the proof-of-concept reported here validates the use of DosiKit at 0.5 h postirradiation, further studies are needed to calibrate and evaluate the performance of the DosiKit assay at longer times after irradiation.


Assuntos
Imunoensaio/instrumentação , Radiometria/instrumentação , Adulto , Sangue/efeitos da radiação , Calibragem , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
3.
PLoS One ; 10(7): e0132194, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26177207

RESUMO

In case of a mass casualty radiation event, there is a need to distinguish total-body irradiation (TBI) and partial-body irradiation (PBI) to concentrate overwhelmed medical resources to the individuals that would develop an acute radiation syndrome (ARS) and need hematologic support (i.e., mostly TBI victims). To improve the identification and medical care of TBI versus PBI individuals, reliable biomarkers of exposure could be very useful. To investigate this issue, pairs of baboons (n = 18) were exposed to different situations of TBI and PBI corresponding to an equivalent of either 5 Gy 60Co gamma irradiation (5 Gy TBI; 7.5 Gy left hemibody/2.5 right hemibody TBI; 5.55 Gy 90% PBI; 6.25 Gy 80% PBI; 10 Gy 50% PBI, 15 Gy 30% PBI) or 2.5 Gy (2.5 Gy TBI; 5 Gy 50% PBI). More than fifty parameters were evaluated before and after irradiation at several time points up to 200 days. A partial least square discriminant analysis showed a good distinction of TBI from PBI situations that were equivalent to 5 Gy. Furthermore, all the animals were pooled in two groups, TBI (n = 6) and PBI (n = 12), for comparison using a logistic regression and a non parametric statistical test. Nine plasmatic biochemical markers and most of hematological parameters turned out to discriminate between TBI and PBI animals during the prodromal phase and the manifest illness phase. The most significant biomarkers were aspartate aminotransferase, creatine kinase, lactico dehydrogenase, urea, Flt3-ligand, iron, C-reactive protein, absolute neutrophil count and neutrophil-to-lymphocyte ratio for the early period, and Flt3-ligand, iron, platelet count, hemoglobin, monocyte count, absolute neutrophil count and neutrophil-to-lymphocyte ratio for the ARS phase. These results suggest that heterogeneity could be distinguished within a range of 2.5 to 5 Gy TBI.


Assuntos
Biomarcadores/sangue , Modelos Animais , Lesões Experimentais por Radiação/sangue , Irradiação Corporal Total/métodos , Animais , Aspartato Aminotransferases/sangue , Proteína C-Reativa/metabolismo , Creatina Quinase/sangue , Raios gama , Humanos , Ferro/sangue , Contagem de Leucócitos , Masculino , Proteínas de Membrana/sangue , Papio , Doses de Radiação , Lesões Experimentais por Radiação/diagnóstico , Lesões Experimentais por Radiação/etiologia , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ureia/sangue , Irradiação Corporal Total/efeitos adversos
4.
Health Phys ; 109(2): 134-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26107434

RESUMO

The evolution of organ damage following extensive high-dose irradiation remains largely unexplored and needs further investigation. Wistar rats [with or without partial bone marrow protection (∼20%)] were irradiated at lethal gamma-ray doses (12, 14, and 16 Gy) and received antibiotic support. While total-body-irradiated rats did not survive, bone marrow protection (achieved by protecting hind limbs behind a lead wall) combined with antibiotic support allowed survival of 12-Gy and 14-Gy irradiated rats for more than 3 mo, with a late phase of body weight loss and altered clinical status. Histological analysis of radiation-induced damages in visceral organs (liver, kidney, and ileum), performed 64 and 104 d after high-dose body irradiation, indicates that the extent and the evolution of damage depend on both the irradiation dose and organ. A dose-related aggravation of lesions was observed in the liver and kidney but not in the ileum. In contrast to the liver, alterations in the kidney and ileum aggravate with time, emphasizing the need to develop new efficient countermeasures to protect both the gastrointestinal tract and kidney from late-occurring radiation effects. Specifically, the complex evolution of organ damage presented in this paper offers the possibility to explore and then validate specific therapeutic windows using candidate drugs targeted to each injured visceral organ.


Assuntos
Medula Óssea/efeitos da radiação , Doses de Radiação , Proteção Radiológica , Animais , Antibacterianos/farmacologia , Peso Corporal/efeitos da radiação , Relação Dose-Resposta à Radiação , Íleo/patologia , Íleo/efeitos da radiação , Rim/patologia , Rim/efeitos da radiação , Fígado/patologia , Fígado/efeitos da radiação , Contagem de Linfócitos , Masculino , Ratos , Ratos Wistar
5.
PLoS One ; 10(4): e0122900, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25836679

RESUMO

In case of high-dose radiation exposure, mechanisms controlling late visceral organ damage are still not completely understood and may involve the central nervous system. To investigate the influence of cranial/brain irradiation on late visceral organ damage in case of high-dose exposure, Wistar rats were irradiated at 12 Gy, with either the head and fore limbs or the two hind limbs protected behind a lead wall (head- and hind limbs-protected respectively), which allows long-term survival thanks to bone marrow protection. Although hind limbs- and head-protected irradiated rats exhibited similar hematopoietic and spleen reconstitution, a late body weight loss was observed in hind limbs-protected rats only. Histological analysis performed at this time revealed that late damages to liver, kidney and ileum were attenuated in rats with head exposed when compared to animals whose head was protected. Plasma measurements of inflammation biomarkers (haptoglobin and the chemokine CXCL1) suggest that the attenuated organ damage in hind limbs-protected rats may be in part related to reduced acute and chronic inflammation. Altogether our results demonstrate the influence of cranial/brain exposure in the onset of organ damage.


Assuntos
Encéfalo/efeitos da radiação , Irradiação Hemicorpórea/efeitos adversos , Exposição à Radiação , Crânio/efeitos da radiação , Vísceras/patologia , Vísceras/efeitos da radiação , Análise de Variância , Animais , Quimiocina CXCL1/sangue , Haptoglobinas/metabolismo , Técnicas Histológicas , Ratos , Ratos Wistar , Redução de Peso/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...