Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mammal ; 105(3): 481-489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812925

RESUMO

Dispersal is an important process that is widely studied across species, and it can be influenced by intrinsic and extrinsic factors. Intrinsic factors commonly assessed include the sex and age of individuals, while landscape features are frequently-tested extrinsic factors. Here, we investigated the effects of both sex and landscape composition and configuration on genetic distances among bare-nosed wombats (Vombatus ursinus)-one of the largest fossorial mammals in the world and subject to habitat fragmentation, threats from disease, and human persecution including culling as an agricultural pest. We analyzed a data set comprising 74 Tasmanian individuals (30 males and 44 females), genotyped for 9,064 single-nucleotide polymorphisms. We tested for sex-biased dispersal and the influence of landscape features on genetic distances including land use, water, vegetation, elevation, and topographic ruggedness. We detected significant female-biased dispersal, which may be related to females donating burrows to their offspring due to the energetic cost of excavation, given their large body sizes. Land use, waterbodies, and elevation appeared to be significant landscape predictors of genetic distance. Land use potentially reflects land clearing and persecution over the last 200 years. If our findings based on a limited sample size are valid, retention and restoration of nonanthropogenic landscapes in which wombats can move and burrow may be important for gene flow and maintenance of genetic diversity.

2.
Annu Rev Anim Biosci ; 12: 135-160, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738454

RESUMO

The bare-nosed wombat is an iconic Australian fauna with remarkable biological characteristics and mythology. This solitary, muscular, fossorial, herbivorous marsupial from southeast Australia has continent and continental island subspeciation. Vombatiformes also contains hairy-nosed wombats (Lasiorhinus spp.); koala (Phascolarctos cinereus); and extinct megafauna, Phascolonus gigas (giant wombat), Diprotodon, and Thylacoleo (marsupial lion). Culturally important to Aboriginal people, bare-nosed wombats engineer ecosystems through digging, grazing, and defecation. Olfaction and cubic fecal aggregations appear critical for communication, including identity, courtship, and mating. Though among the largest fossorial herbivores, they have a nutrient-poor diet, a home range up to an order of magnitude smaller than expected, and a metabolism among the lowest extreme for mammals >10 kg. Metabolic depression may confer advantages over resource competitors and fossorial lifestyle protection from predators, fires, and climatic extremes. Bare-nosed wombats are loved and persecuted by European colonists. Recent population increases may reflect softening attitudes toward, and greater protections of, bare-nosed wombats.


Assuntos
Ecossistema , Marsupiais , Animais , Austrália , Biologia
3.
Ticks Tick Borne Dis ; 14(5): 102202, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244157

RESUMO

Human Lyme disease-primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America-is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014-2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes.


Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doença de Lyme , Animais , Humanos , Ixodes/microbiologia , Ninfa/microbiologia , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doença de Lyme/veterinária
4.
Oecologia ; 197(2): 313-325, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34095983

RESUMO

Resource competition is an important interaction that can structure ecological communities, but is difficult to demonstrate in nature, and rarely demonstrated for large mammals including marsupials. We analysed 10 years of population survey data to investigate resource competition between bare-nosed wombats (Vombatus ursinus) and eastern grey kangaroos (Macropus giganteus) at two sites to assess whether resource competition is occurring. At one site, wombat abundance was reduced by increased mortality from mange disease, whereas at the other site, kangaroo abundance was reduced primarily by culling. We used the modified Lotka-Volterra competition (LVC) models to describe the mechanism of resource competition and fitted those models to the empirical data by maximum likelihood estimation. We found strong negative relationships between the abundance of wombats and kangaroos at each site, and resource competition was also mechanistically supported by the modified LVC models. The estimated competition coefficients indicate that bare-nosed wombats are a slightly superior competitor of eastern grey kangaroos than vice versa, and that intraspecific competition is almost twice as strong as interspecific competition. In addition, this study facilitated the calculation of the transmission rate associated with mange disease at one site (0.011), and the removal rate owing to culling, the introduction of a predator species, and drought at the other site (0.0006). Collectively, this research represents a rare empirical demonstration of resource competition between large mammals and contributes new insight into the ecology of two of Australia's largest grazing marsupials.


Assuntos
Ecossistema , Macropodidae , Animais , Dinâmica Populacional
5.
Ecol Evol ; 11(6): 2488-2502, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767816

RESUMO

Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population-level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well-studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family-based genome-wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome-wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP-based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.

7.
Parasit Vectors ; 14(1): 18, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407820

RESUMO

BACKGROUND: Sarcoptic mange causes significant animal welfare and occasional conservation concerns for bare-nosed wombats (Vombatus ursinus) throughout their range. To date, in situ chemotherapeutic interventions have involved macrocytic lactones, but their short duration of action and need for frequent re-administration has limited treatment success. Fluralaner (Bravecto®; MSD Animal Health), a novel isoxazoline class ectoparasiticide, has several advantageous properties that may overcome such limitations. METHODS: Fluralaner was administered topically at 25 mg/kg (n = 5) and 85 mg/kg (n = 2) to healthy captive bare-nosed wombats. Safety was assessed over 12 weeks by clinical observation and monitoring of haematological and biochemical parameters. Fluralaner plasma pharmacokinetics were quantified using ultra-performance liquid chromatography and tandem mass spectrometry. Efficacy was evaluated through clinical assessment of response to treatment, including mange and body condition scoring, for 15 weeks after topical administration of 25 mg/kg fluralaner to sarcoptic mange-affected wild bare-nosed wombats (n = 3). Duration of action was determined through analysis of pharmacokinetic parameters and visual inspection of study subjects for ticks during the monitoring period. Methods for diluting fluralaner to enable 'pour-on' application were compared, and an economic and treatment effort analysis of fluralaner relative to moxidectin was undertaken. RESULTS: No deleterious health impacts were detected following fluralaner administration. Fluralaner was absorbed and remained quantifiable in plasma throughout the monitoring period. For the 25 mg/kg and 85 mg/kg treatment groups, the respective means for maximum recorded plasma concentrations (Cmax) were 6.2 and 16.4 ng/ml; for maximum recorded times to Cmax, 3.0 and 37.5 days; and for plasma elimination half-lives, 40.1 and 166.5 days. Clinical resolution of sarcoptic mange was observed in all study animals within 3-4 weeks of treatment, and all wombats remained tick-free for 15 weeks. A suitable product for diluting fluralaner into a 'pour-on' was found. Treatment costs were competitive, and predicted treatment effort was substantially lower relative to moxidectin. CONCLUSIONS: Fluralaner appears to be a safe and efficacious treatment for sarcoptic mange in the bare-nosed wombat, with a single dose lasting over 1-3 months. It has economic and treatment-effort-related advantages over moxidectin, the most commonly used alternative. We recommend a dose of 25 mg/kg fluralaner and, based on the conservative assumption that at least 50% of a dose makes dermal contact, Bravecto Spot-On for Large Dogs as the most appropriate formulation for adult bare-nosed wombats.


Assuntos
Isoxazóis , Marsupiais/parasitologia , Escabiose/tratamento farmacológico , Administração Tópica , Animais , Animais Selvagens/parasitologia , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Inseticidas/administração & dosagem , Inseticidas/efeitos adversos , Inseticidas/farmacocinética , Inseticidas/uso terapêutico , Isoxazóis/administração & dosagem , Isoxazóis/efeitos adversos , Isoxazóis/farmacocinética , Isoxazóis/uso terapêutico , Sarcoptes scabiei/efeitos dos fármacos , Escabiose/veterinária , Tasmânia
8.
Soft Matter ; 17(3): 475-488, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289747

RESUMO

The bare-nosed wombat (Vombatus ursinus) is a fossorial, herbivorous, Australian marsupial, renowned for its cubic feces. However, the ability of the wombat's soft intestine to sculpt flat faces and sharp corners in feces is poorly understood. In this combined experimental and numerical study, we show one mechanism for the formation of corners in a highly damped environment. Wombat dissections show that cubes are formed within the last 17 percent of the intestine. Using histology and tensile testing, we discover that the cross-section of the intestine exhibits regions with a two-fold increase in thickness and a four-fold increase in stiffness, which we hypothesize facilitates the formation of corners by contractions of the intestine. Using a mathematical model, we simulate a series of azimuthal contractions of a damped elastic ring composed of alternating stiff and soft regions. Increased stiffness ratio and higher Reynolds number yield shapes that are more square. The corners arise from faster contraction in the stiff regions and relatively slower movement in the center of the soft regions. These results may have applications in manufacturing, clinical pathology, and digestive health.


Assuntos
Marsupiais , Animais , Austrália , Fezes , Fungos , Intestinos
9.
Evol Appl ; 12(6): 1114-1123, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31293627

RESUMO

Island populations can represent genetically distinct and evolutionarily important lineages relative to mainland conspecifics. However, phenotypic divergence of island populations does not necessarily reflect genetic divergence, particularly for lineages inhabiting islands periodically connected during Pleistocene low sea stands. Marine barriers may also not be solely responsible for any divergence that is observed. Here, we investigated genetic divergence among and within the three phenotypically distinct subspecies of bare-nosed wombats (Vombatus ursinus) in south-east Australia that are presently-but were not historically-isolated by marine barriers. Using genome-wide single nucleotide polymorphisms, we identified three genetically distinct groups (mainland Australia, Bass Strait island, and Tasmania) corresponding to the recognized subspecies. However, isolation by distance was observed in the Tasmanian population, indicating additional constraints on gene flow can contribute to divergence in the absence of marine barriers, and may also explain genetic structuring among fragmented mainland populations. We additionally confirm origins and quantify the genetic divergence of an island population 46 years after the introduction of 21 individuals from the Vulnerable Bass Strait subspecies. In the light of our findings, we make recommendations for the maintenance of genetic variation and fitness across the species range.

10.
J Wildl Dis ; 55(1): 231-237, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30096035

RESUMO

The invasive ectoparasite Sarcoptes scabiei affects the welfare and conservation of Australian marsupials. Molecular data suggest that spillover from other hosts may be responsible for the emergence of this infectious disease, but the scale of such studies is limited. We performed expanded molecular typing of the S. scabiei mitochondrial cox1 gene from 81 skin scrapings from infested wombats ( Vombatus ursinus), koalas ( Phascolarctos cinereus), red foxes ( Vulpes vulpes), and dogs ( Canis lupus familiaris) across Australia. Combined with existing S. scabiei sequences, our analysis revealed 16 haplotypes among Australian animals, sharing between 93.3% and 99.7% sequence similarity. While some sequences were unique to specific hosts or to Australia, key haplotypes could be detected across several marsupial hosts as well as to wild or domestic canids in Australia. We identified 43 cox1 haplotypes with many Australian haplotypes identical to S. scabiei mites from inside and outside Europe. We concluded that multiple introduction events were plausible explanations to the origin and emergence of this parasite into Australian marsupials and that disease spillover from canids was likely. Together, our greatly expanded S. scabiei sequence dataset provided a more nuanced picture of both spillover and sustained intraspecific transmission for this important parasite.


Assuntos
Doenças do Cão/parasitologia , Raposas/parasitologia , Marsupiais/parasitologia , Sarcoptes scabiei/genética , Escabiose/veterinária , Animais , Proteínas de Artrópodes/genética , Austrália/epidemiologia , Doenças do Cão/epidemiologia , Cães , Regulação da Expressão Gênica , Variação Genética , Escabiose/epidemiologia , Escabiose/parasitologia
11.
PeerJ ; 6: e5291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065882

RESUMO

BACKGROUND: The globally distributed epidermal ectoparasite, Sarcoptes scabiei, is a serious health and welfare burden to at-risk human and animal populations. Rapid and sensitive detection of S. scabiei infestation is critical for intervention strategies. While direct microscopy of skin scrapings is a widely utilised diagnostic method, it has low sensitivity. PCR, alternatively, has been shown to readily detect mite DNA even in microscopy-negative skin scrapings. However, a limitation to the latter method is the requirements for specialised equipment and reagents. Such resources may not be readily available in regional or remote clinical settings and are an important consideration in diagnosis of this parasitic disease. METHODOLOGY: A Loop Mediated Isothermal Amplification (LAMP) assay targeting the ITS-2 gene for S. scabiei was developed and evaluated on clinical samples from various hosts, previously screened with conventional S. scabies-specific PCR. Species specificity of the newly developed LAMP assay was tested against a range of DNA samples from other arthropods. The LAMP assays were performed on a real-time fluorometer as well as thermal cycler to evaluate an end-point of detection. Using skin scrapings, a rapid sample processing method was assessed to eliminate extensive processing times involved with DNA extractions prior to diagnostic assays, including LAMP. RESULTS: The S. scabiei LAMP assay was demonstrated to be species-specific and able to detect DNA extracted from a single mite within a skin scraping in under 30 minutes. Application of this assay to DNA extracts from skin scrapings taken from a range of hosts revealed 92.3% congruence (with 92.50% specificity and 100% sensitivity) to the conventional PCR detection of S. scabiei. Preliminary results have indicated that diagnostic outcome from rapidly processed dry skin scrapings using our newly developed LAMP is possible in approximately 40 minutes. DISCUSSION: We have developed a novel, rapid and robust molecular assay for detecting S. scabiei infesting humans and animals. Based on these findings, we anticipate that this assay will serve an important role as an ancillary diagnostic tool at the point-of-care, complementing existing diagnostic protocols for S. scabiei.

12.
R Soc Open Sci ; 5(4): 180018, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765692

RESUMO

Sarcoptic mange, caused by the parasitic mite Sarcoptes scabiei, causes a substantive burden of disease to humans, domestic animals and wildlife, globally. There are many effects of S. scabiei infection, culminating in the disease which hosts suffer. However, major knowledge gaps remain on the pathogenic impacts of this infection. Here, we focus on the bare-nosed wombat host (Vombatus ursinus) to investigate the effects of mange on: (i) host heat loss and thermoregulation, (ii) field metabolic rates, (iii) foraging and resting behaviour across full circadian cycles, and (iv) fatty acid composition in host adipose, bone marrow, brain and muscle tissues. Our findings indicate that mange-infected V. ursinus lose more heat to the environment from alopecia-affected body regions than healthy individuals. Additionally, mange-infected individuals have higher metabolic rates in the wild. However, these metabolic demands are difficult to meet, because infected individuals spend less time foraging and more time inactive relative to their healthy counterparts, despite being outside of the burrow for longer. Lastly, mange infection results in altered fatty acid composition in adipose tissue, with increased amounts of omega-6 acids, and decreased amounts of omega-3 acids, a consequence of chronic cutaneous inflammation and inhibition of anti-inflammatory responses. These findings highlight the interactions of mange-induced physiological and behavioural changes, and have implications for the treatment and rehabilitation of infected individuals.

13.
Vet Parasitol ; 251: 119-124, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426467

RESUMO

Sarcoptic mange is a globally significant parasitic disease of humans and other animals, both domestic and wild. But clinical diagnosis of S. scabiei infestation, using the standard skin scraping followed by microscopy technique, remains highly variable (predominantly due to false-negatives), and a major challenge for human and animal welfare. Here, we utilised a unique sample set from bare-nosed wombats (Vombatus ursinus) to evaluate a variety of putatively useful diagnostic approaches for S. scabiei. Against the standard of skin scrapings followed by microscopy, we compared observational scoring of mange severity (often employed in field studies of wildlife), PCR on skin scrapings (recently proposed as an improvement for humans and other animals), and PCR on skin swabs (proposed a non-invasive method for humans and other animals). We find that observational scoring positively correlated with counts of S. scabiei from skin scrapings, particularly as mange severity increases, but underdiagnoses early mange. Species-specific PCR for S. scabiei on skin scrapings had enhanced capacity for mite detection relative to microscopy. Finally, the non-invasive sampling method of PCR on skin swab samples had a high congruence to skin scraping microscopy, however prospective false negatives as a consequence to sampling is concerning. To our knowledge, this is the first study to simultaneously assess this combination of methods for S. scabiei diagnosis. We conclude that PCR on skin scrapings as an advancement on traditional microscopy, and the other techniques (observational, skin swabs and microscopy) remain useful, but harbour greater false-negatives. Outcomes are transferrable to diagnosis of S. scabiei for other host species, including humans, particularly for crusted mange and potentially ordinary mange also.


Assuntos
Técnicas de Diagnóstico Molecular/veterinária , Reação em Cadeia da Polimerase/métodos , Sarcoptes scabiei/genética , Escabiose/veterinária , Pele/parasitologia , Animais , Humanos , Marsupiais/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Escabiose/diagnóstico , Escabiose/parasitologia
14.
BMC Evol Biol ; 17(1): 233, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183283

RESUMO

BACKGROUND: Debilitating skin infestations caused by the mite, Sarcoptes scabiei, have a profound impact on human and animal health globally. In Australia, this impact is evident across different segments of Australian society, with a growing recognition that it can contribute to rapid declines of native Australian marsupials. Cross-host transmission has been suggested to play a significant role in the epidemiology and origin of mite infestations in different species but a chronic lack of genetic resources has made further inferences difficult. To investigate the origins and molecular epidemiology of S. scabiei in Australian wildlife, we sequenced the mitochondrial genomes of S. scabiei from diseased wombats (Vombatus ursinus) and koalas (Phascolarctos cinereus) spanning New South Wales, Victoria and Tasmania, and compared them with the recently sequenced mitochondrial genome sequences of S. scabiei from humans. RESULTS: We found unique S. scabiei haplotypes among individual wombat and koala hosts with high sequence similarity (99.1% - 100%). Phylogenetic analysis of near full-length mitochondrial genomes revealed three clades of S. scabiei (one human and two marsupial), with no apparent geographic or host species pattern, suggestive of multiple introductions. The availability of additional mitochondrial gene sequences also enabled a re-evaluation of a range of putative molecular markers of S. scabiei, revealing that cox1 is the most informative gene for molecular epidemiological investigations. Utilising this gene target, we provide additional evidence to support cross-host transmission between different animal hosts. CONCLUSIONS: Our results suggest a history of parasite invasion through colonisation of Australia from hosts across the globe and the potential for cross-host transmission being a common feature of the epidemiology of this neglected pathogen. If this is the case, comparable patterns may exist elsewhere in the 'New World'. This work provides a basis for expanded molecular studies into mange epidemiology in humans and animals in Australia and other geographic regions.


Assuntos
Genoma Mitocondrial , Marsupiais/parasitologia , Sarcoptes scabiei/genética , Escabiose/parasitologia , Análise de Sequência de DNA , Animais , Animais Selvagens/genética , Austrália/epidemiologia , Composição de Bases/genética , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Mitocondriais , Tamanho do Genoma , Haplótipos/genética , Humanos , Anotação de Sequência Molecular , Filogenia , Escabiose/epidemiologia
15.
Parasit Vectors ; 9(1): 316, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27255333

RESUMO

Due to its suspected increase in host range and subsequent global diversification, Sarcoptes scabiei has important implications at a global scale for wildlife conservation and animal and human health. The introduction of this pathogen into new locations and hosts has been shown to produce high morbidity and mortality, a situation observed recently in Australian and North American wildlife.Of the seven native animal species in Australia known to be infested by S. scabiei, the bare-nosed wombat (Vombatus ursinus) suffers the greatest with significant population declines having been observed in New South Wales and Tasmania. The origins of sarcoptic mange in Australian native animals are poorly understood, with the most consistent conclusion being that mange was introduced by settlers and their dogs and subsequently becoming a major burden to native wildlife. Four studies exist addressing the origins of mange in Australia, but all Australian S. scabiei samples derive from only two of these studies. This review highlights this paucity of phylogenetic knowledge of S. scabiei within Australia, and suggests further research is needed to confidently determine the origin, or multiple origins, of this parasite.At the global scale, numerous genetic studies have attempted to reveal how the host species and host geographic location influence S. scabiei phylogenetics. This review includes an analysis of the global literature, revealing that inconsistent use of gene loci across studies significantly influences phylogenetic inference. Furthermore, by performing a contemporary analytical approach on existing data, it is apparent that (i) new S. scabiei samples, (ii) appropriate gene loci targets, and (iii) advanced phylogenetic approaches are necessary to more confidently comprehend the origins of mange in Australia. Advancing this field of research will aid in understanding the mechanisms of spillover for mange and other parasites globally.


Assuntos
Doenças do Cão/parasitologia , Sarcoptes scabiei/genética , Escabiose/parasitologia , Animais , Austrália/epidemiologia , Doenças do Cão/epidemiologia , Cães , Humanos , Filogenia , Escabiose/epidemiologia
16.
PLoS One ; 10(3): e0118994, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798819

RESUMO

Studies in molecular ecology depend on field-collected samples for genetic information, and the tissue sampled and preservation conditions strongly affect the quality of the DNA obtained. DNA yields from different tissue types have seldom been compared, and the relative performance of storage media has never been directly tested, even though these media may influence DNA degradation under field conditions. We analyzed DNA yield from buccal swabs and wing punches harvested from live bats using nucleic acid quantification as well as quantitative PCR for a single-copy nuclear locus. We also compared DNA yields from wing tissue preserved in three media: ethanol, NaCl-saturated dimethyl sulfoxide (DMSO), and silica desiccant. Wing punches yielded more total DNA than did buccal swabs, and wing tissues preserved in silica beads yielded significantly more total and nuclear DNA than those preserved in DMSO or ethanol. These results show that tissue type and preservation media strongly influence the quantity of DNA obtained from non-lethal genetic samples, and based on these effects we provide recommendations for field collection of tissues for genetic analyses.


Assuntos
Quirópteros/genética , DNA/isolamento & purificação , Preservação de Tecido/métodos , Animais , Quirópteros/anatomia & histologia , Boca , Manejo de Espécimes/métodos , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...