Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0295001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626237

RESUMO

Aquatic invertebrates provide important ecosystem services, including decomposition and nutrient cycling, and provide nutrition for birds, fish, amphibians, and bats. Thus, the effects of agricultural land management practices on aquatic invertebrates are relevant to farmers, wildlife biologists, and policymakers. Here, we used data on aquatic invertebrates (159 taxa, 73 to species, 75 to genus/family) collected in 40 wetlands in the Canadian prairies to test for direct and indirect relationships among land management types (perennial cover, organic, minimum tillage, conventional), landscape structure (cropland and wetland cover within the surrounding landscape), and water quality (total nutrient levels, turbidity) on species richness of invertebrates using structural equation modelling. Additionally, we assessed variation in community composition within and among wetlands in different land use management types using a direct gradient analysis and variance partitioning. The direct effects of land management type were not supported but we found strong supportive evidence that effects of land management on richness were significantly mediated through cropland cover, nutrient levels, and turbidity. After controlling for these indirect effects, aquatic invertebrate richness decreased along a gradient from the lowest to the highest farming intensity, i.e., richness decreased from perennial cover sites to organic to minimum tillage to conventional sites. Support was also found for negative effects of nutrient levels and turbidity on richness. We did not find significant support for differences in gamma diversity or a simple test (homogeneity of multivariate dispersions) of differences in turnover among land management types; however, land management had a significant effect in distance-based redundancy analysis. Taken together, these results suggest that focusing conservation efforts on reducing cropland erosion and nutrient inputs to wetlands and creating more permanent cover may be effective strategies for conserving richness of aquatic invertebrates in agricultural landscapes in this region.


Assuntos
Ecossistema , Pradaria , Animais , Conservação dos Recursos Naturais/métodos , Canadá , Invertebrados , Nutrientes , Biodiversidade
2.
Ecol Appl ; 34(4): e2943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504599

RESUMO

Evaluating the impacts of farming systems on biodiversity is increasingly important given the need to stem biodiversity loss, decrease fossil fuel dependency, and maintain ecosystem services benefiting farmers. We recorded woody and herbaceous plant species diversity, composition, and abundance in 43 wetland-adjacent prairie remnants beside crop fields managed using conventional, minimum tillage, organic, or perennial cover (wildlife-friendly) land management in the Prairie Pothole Region. We used a hierarchical framework to estimate diversity at regional and local scales (gamma, alpha), and how these are related through species turnover (beta diversity). We tested the expectation that gamma richness/evenness and beta diversity of all plants would be higher in remnants adjacent to perennial cover and organic fields than in conventional and minimum tillage fields. We expected the same findings for plants providing ecosystem services (bee-pollinated species) and disservices (introduced species). We predicted similar relative effects of land management on alpha diversity, but with the expectation that the benefits of organic farming would decrease with increasing grassland in surrounding landscapes. Gamma richness and evenness of all plants were highest for perennial cover, followed by minimum tillage, organic, and conventional sites. Bee-pollinated species followed a similar pattern for richness, but for evenness organic farming came second, after perennial cover sites, followed by minimum tillage and conventional. For introduced species, organic sites had the highest gamma richness and evenness. Grassland amount moderated the effect of land management type on all plants and bee-pollinated plant richness, but not as expected. The richness of organic sites increased with the amount of grassland in the surrounding landscape. Conversely, for conventional sites, richness increased as the amount of grassland in the landscape declined. Our results are consistent with the expectation that adopting wildlife-friendly land management practices can benefit biodiversity at regional and local scales, in particular the use of perennial cover to benefit plant diversity at regional scales. At more local extents, organic farming increased plant richness, but only when sufficient grassland was available in the surrounding landscape; organic farms also had the highest beta diversity for all plants and bee-pollinated plants. Maintaining native cover in agroecosystems, in addition to low-intensity farming practices, could sustain plant biodiversity and facilitate important ecosystem services.


Assuntos
Agricultura , Biodiversidade , Plantas , Áreas Alagadas , Agricultura/métodos , Plantas/classificação , Pradaria , Conservação dos Recursos Naturais/métodos
3.
Ecol Appl ; 33(3): e2820, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36792925

RESUMO

Rapid expansion of the human population poses a challenge for wildlife conservation in agricultural landscapes. One proposal for addressing this challenge is to increase biodiversity in such landscapes by increasing crop diversity. However, studies report both positive and negative effects of crop diversity on biodiversity. One possible explanation, derived from the "area-heterogeneity tradeoff hypothesis," is that the effect of crop diversity on biodiversity depends on a tradeoff between increasing the number of crop types in a landscape and decreasing the amount of each single crop type. This should cause positive effects of increasing crop diversity at low to intermediate crop diversity and negative effects at intermediate to high crop diversity. We also propose two factors that could change the point at which the effect of increasing crop diversity shifts from positive to negative. First, we predicted that this shift would occur at a lower crop diversity when the surrounding landscape contains less semi-natural habitat and at a higher crop diversity when the landscape contains more semi-natural habitat. This should increase the likelihood of detecting negative effects of crop diversity when semi-natural cover is low and positive effects when it is high. Second, we predicted that the shift from a positive to negative effect would occur at a lower crop diversity when it is measured locally than when it is measured at greater distances from the site, making detection of negative crop diversity effects more likely when measurements are at local extents. We tested these predictions using data on the biodiversity of herbaceous plants, butterflies, syrphid flies, woody plants, bees, carabid beetles, spiders, and birds at 221 crop field edges in Eastern Ontario, Canada. We found support for an area-crop diversity tradeoff. Semi-natural cover and measurement extent influenced the biodiversity-crop diversity relationship, with positive effects when semi-natural cover was high and negative effects when semi-natural cover was low and when crop diversity was measured at local extents. The results suggest that policies/guidelines designed to increase crop diversity will not benefit biodiversity in the landscapes where conservation action is most urgently needed, that is, in landscapes with high agricultural use and low semi-natural cover.


Assuntos
Borboletas , Animais , Abelhas , Humanos , Biodiversidade , Ecossistema , Produtos Agrícolas , Agricultura/métodos , Ontário
4.
Proc Biol Sci ; 290(1990): 20220909, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629096

RESUMO

Ecologists often state that weak dispersers are particularly at risk from land use intensification, and that they therefore should be prioritized for conservation. We reviewed the empirical evidence, to evaluate whether this idea should be used as a general rule in conservation. While 89% of authors predicted that weak dispersers are more vulnerable to land use intensification (80 out of 90 papers), only 56% of reported tests (235 out of 422) were consistent with this prediction. Thirty per cent of tests (128 out of 422) were consistent with the opposite prediction, that strong dispersers are more vulnerable to intensification, and 60% of articles (45 out of 75) had at least one test where strong dispersers were most vulnerable. The likelihood of finding that weak dispersers are more vulnerable to intensification than strong dispersers varied with latitude, taxonomic group and type of land use intensification. Notably, the odds of finding that weak dispersers are more vulnerable to intensification than strong dispersers was higher if the study was nearer to the equator. Taken together, our results show that the prediction that weak dispersers are more vulnerable than strong dispersers to intensification is not sufficiently supported to justify using weak dispersal as a general indicator of species risk in human-modified landscapes.

5.
Sci Rep ; 12(1): 17067, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224283

RESUMO

Boreal caribou require large areas of undisturbed habitat for persistence. They are listed as threatened with the risk of extinction in Canada because of landscape changes induced by human activities and resource extraction. Here we ask: Can the protection of habitat for boreal caribou help Canada meet its commitments under the United Nations Convention on Biological Diversity and United Nations Framework Convention on Climate Change? We identified hotspots of high conservation value within the distribution of boreal caribou based on: (1) three measures of biodiversity for at risk species (species richness, unique species and taxonomic diversity); (2) climate refugia or areas forecasted to remain unchanged under climate change; and, (3) areas of high soil carbon that could add to Canada's greenhouse gas emissions if released into the atmosphere. We evaluated the overlap among hotspot types and how well hotspots were represented in Canada's protected and conserved areas network. While hotspots are widely distributed across the boreal caribou distribution, with nearly 80% of the area falling within at least one hotspot type, only 3% of the distribution overlaps three or more hotspots. Moreover, the protected and conserved areas network only captures about 10% of all hotspots within the boreal caribou distribution. While the protected and conserved areas network adequately represents hotspots with high numbers of at risk species, areas occupied by unique species, as well as the full spectrum of areas occupied by different taxa, are underrepresented. Climate refugia and soil carbon hotspots also occur at lower percentages than expected. These findings illustrate the potential co-benefits of habitat protection for caribou to biodiversity and ecosystem services and suggest caribou may be a good proxy for future protected areas planning and for developing effective conservation strategies in regional assessments.


Assuntos
Gases de Efeito Estufa , Rena , Animais , Biodiversidade , Canadá , Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Humanos , Solo
6.
Sci Rep ; 12(1): 11895, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831324

RESUMO

The biodiversity and climate change crises have led countries-including Canada-to commit to protect more land and inland waters and to stabilize greenhouse gas concentrations. Canada is also obligated to recover populations of at-risk species, including boreal caribou. Canada has the opportunity to expand its protected areas network to protect hotspots of high value for biodiversity and climate mitigation. However, co-occurrence of hotspots is rare. Here we ask: is it possible to expand the network to simultaneously protect areas important for boreal caribou, other species at risk, climate refugia, and carbon stores? We used linear programming to prioritize areas for protection based on these conservation objectives, and assessed how prioritization for multiple, competing objectives affected the outcome for each individual objective. Our multi-objective approach produced reasonably strong representation of value across objectives. Although trade-offs were required, the multi-objective outcome was almost always better than when we ignored one objective to maximize value for another, highlighting the risk of assuming that a plan based on one objective will also result in strong outcomes for others. Multi-objective optimization approaches could be used to plan for protected areas networks that address biodiversity and climate change objectives, even when hotspots do not co-occur.


Assuntos
Mudança Climática , Rena , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema
7.
Ecology ; 99(9): 2058-2066, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29920659

RESUMO

Some theories predict habitat specialists should be less dispersive and migratory than generalists, while other theories predict the opposite. We evaluated the cross-species relationship between the degree of habitat specialization and dispersal and migration status in 101 bird species breeding in North America and the United Kingdom, using empirical estimates of the degree of habitat specialization from breeding bird surveys and mean dispersal distance estimates from large-scale mark-recapture studies. We found that habitat specialists dispersed farther than habitat generalists, and full migrants had more specialized habitat than partial migrants or resident species. To our knowledge this is the first large-scale, multi-species study to demonstrate a positive relationship between the degree of habitat specialization and dispersal, and it is opposite to the pattern found for invertebrates. This finding is particularly interesting because it suggests that trade-offs between the degree of habitat specialization and dispersal ability are not conserved across taxonomic groups. This cautions against extrapolation of trait co-occurrence from one species group to another. In particular, it suggests that efforts aimed at conserving the most habitat-specialist temperate-breeding birds will not lead to conservation of the most dispersal-limited species.


Assuntos
Ecossistema , Especialização , Animais , Aves , América do Norte , Reino Unido
8.
Ecol Evol ; 5(24): 5792-800, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26811754

RESUMO

Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat ("matrix"). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary-crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual-based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher-quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary-crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human-altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human-altered landscapes should help us identify species of conservation concern and target them for management.

9.
Evol Appl ; 6(1): 82-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23396712

RESUMO

Cancer is now understood to be a process that follows Darwinian evolution. Heterogeneous populations of cancerous cells that make up the tumor inhabit the tissue 'microenvironment', where ecological interactions analogous to predation and competition for resources drive the somatic evolution of cancer. The tumor microenvironment plays a crucial role in the tumor genesis, development, and metastasis processes, as it creates the microenvironmental selection forces that ultimately determine the cellular characteristics that result in the greatest fitness. Here, we explore and offer new insights into the spatial aspects of tumor-microenvironment interactions through the application of landscape ecology theory to tumor growth and metastasis within the tissue microhabitat. We argue that small tissue microhabitats in combination with the spatial distribution of resources within these habitats could be important selective forces driving tumor invasiveness. We also contend that the compositional and configurational heterogeneity of components in the tissue microhabitat do not only influence resource availability and functional connectivity but also play a crucial role in facilitating metastasis and may serve to explain, at least in part, tissue tropism in certain cancers. This novel work provides a compelling argument for the necessity of taking into account the structure of the tissue microhabitat when investigating tumor progression.

10.
Ecol Appl ; 22(8): 2277-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23387125

RESUMO

Wildlife managers often use habitat models to determine species habitat requirements and to identify locations for conservation efforts, uses which depend on accurate specification of species-habitat relationships. Prior study suggests that model performance may be influenced by the way we measure environmental predictors. We hypothesized that species responses to landscape predictors are best represented by landscape composition-based measurements, rather than distance-based measurements. We also hypothesized that models using empirical data to select an appropriate scale of effect for each habitat predictor (multi-scale models) should perform better than models that assume a common scale of effect for all predictors (single-scale models). To test these hypotheses we constructed habitat models for three mammal species, Mephitis mephitis, Mustela erminea, and Procyon lotor, based on surveys conducted in 80 landscapes in southeastern Ontario, Canada. For each species we compared the performance of distance- and composition-based measurements, and we compared the performance of single- and multi-scale models. The composition-based measurement, measured at its empirically determined scale of effect, had greater explanatory power than the distance-based measurement of a given predictor more often than expected by chance, supporting our first hypothesis. Contrary to expectation, multi-scale models did not have better explanatory power or predictive performance relative to single-scale models. We identified and evaluated four potential mechanisms to explain this, and, depending on the species, we found that the best explanation was either that predictors have significant effects at a common scale or that, although the modeled effects were at multiple scales, they were of similar magnitude and direction at the scales modeled in single- and multi-scale models. Our results suggest that habitat modeling based on distance-based measurements could be improved by including composition-based measurements of landscape predictor variables, but that inclusion of predictor-specific scales of effect for composition-based measurements does not necessarily improve performance over models including composition-based measurements at a single scale. Conservation and wildlife management may be simplified when single-scale models perform as well as multi-scale models, as this suggests actions conducted at a single scale may address management objectives as well as actions taken at different scales for different landscape features.


Assuntos
Ecossistema , Mephitidae/fisiologia , Modelos Biológicos , Mustelidae/fisiologia , Guaxinins/fisiologia , Animais , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...