Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(48): 19767-19781, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972174

RESUMO

In mitochondria, the sirtuin SIRT5 is an NAD+-dependent protein deacylase that controls several metabolic pathways. Although a wide range of SIRT5 targets have been identified, the overall function of SIRT5 in organismal metabolic homeostasis remains unclear. Given that SIRT5 expression is highest in the heart and that sirtuins are commonly stress-response proteins, we used an established model of pressure overload-induced heart muscle hypertrophy caused by transverse aortic constriction (TAC) to determine SIRT5's role in cardiac stress responses. Remarkably, SIRT5KO mice had reduced survival upon TAC compared with wild-type mice but exhibited no mortality when undergoing a sham control operation. The increased mortality with TAC was associated with increased pathological hypertrophy and with key abnormalities in both cardiac performance and ventricular compliance. By combining high-resolution MS-based metabolomic and proteomic analyses of cardiac tissues from wild-type and SIRT5KO mice, we found several biochemical abnormalities exacerbated in the SIRT5KO mice, including apparent decreases in fatty acid oxidation and glucose oxidation as well as an overall decrease in mitochondrial NAD+/NADH. Together, these abnormalities suggest that SIRT5 deacylates protein substrates involved in cellular oxidative metabolism to maintain mitochondrial energy production. Overall, the functional and metabolic results presented here suggest an accelerated development of cardiac dysfunction in SIRT5KO mice in response to TAC, explaining increased mortality upon cardiac stress. Our findings reveal a key role for SIRT5 in maintaining cardiac oxidative metabolism under pressure overload to ensure survival.


Assuntos
Cardiomegalia/fisiopatologia , Sirtuínas/fisiologia , Animais , Glucose/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Sirtuínas/genética , Análise de Sobrevida , Sístole
2.
Proc Natl Acad Sci U S A ; 114(45): E9608-E9617, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078383

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder and is a major risk factor for colorectal cancer (CRC). Hypoxia is a feature of IBD and modulates cellular and mitochondrial metabolism. However, the role of hypoxic metabolism in IBD is unclear. Because mitochondrial dysfunction is an early hallmark of hypoxia and inflammation, an unbiased proteomics approach was used to assess the mitochondria in a mouse model of colitis. Through this analysis, we identified a ferrireductase: six-transmembrane epithelial antigen of prostate 4 (STEAP4) was highly induced in mouse models of colitis and in IBD patients. STEAP4 was regulated in a hypoxia-dependent manner that led to a dysregulation in mitochondrial iron balance, enhanced reactive oxygen species production, and increased susceptibility to mouse models of colitis. Mitochondrial iron chelation therapy improved colitis and demonstrated an essential role of mitochondrial iron dysregulation in the pathogenesis of IBD. To address if mitochondrial iron dysregulation is a key mechanism by which inflammation impacts colon tumorigenesis, STEAP4 expression, function, and mitochondrial iron chelation were assessed in a colitis-associated colon cancer model (CAC). STEAP4 was increased in human CRC and predicted poor prognosis. STEAP4 and mitochondrial iron increased tumor number and burden in a CAC model. These studies demonstrate the importance of mitochondrial iron homeostasis in IBD and CRC.


Assuntos
Neoplasias do Colo/metabolismo , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , Carcinogênese/metabolismo , Modelos Animais de Doenças , Homeostase/fisiologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Ferro/metabolismo , Camundongos , Camundongos Transgênicos/metabolismo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo
3.
JCI Insight ; 2(14)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28724806

RESUMO

Increasing NAD+ levels by supplementing with the precursor nicotinamide mononucleotide (NMN) improves cardiac function in multiple mouse models of disease. While NMN influences several aspects of mitochondrial metabolism, the molecular mechanisms by which increased NAD+ enhances cardiac function are poorly understood. A putative mechanism of NAD+ therapeutic action exists via activation of the mitochondrial NAD+-dependent protein deacetylase sirtuin 3 (SIRT3). We assessed the therapeutic efficacy of NMN and the role of SIRT3 in the Friedreich's ataxia cardiomyopathy mouse model (FXN-KO). At baseline, the FXN-KO heart has mitochondrial protein hyperacetylation, reduced Sirt3 mRNA expression, and evidence of increased NAD+ salvage. Remarkably, NMN administered to FXN-KO mice restores cardiac function to near-normal levels. To determine whether SIRT3 is required for NMN therapeutic efficacy, we generated SIRT3-KO and SIRT3-KO/FXN-KO (double KO [dKO]) models. The improvement in cardiac function upon NMN treatment in the FXN-KO is lost in the dKO model, demonstrating that the effects of NMN are dependent upon cardiac SIRT3. Coupled with cardio-protection, SIRT3 mediates NMN-induced improvements in both cardiac and extracardiac metabolic function and energy metabolism. Taken together, these results serve as important preclinical data for NMN supplementation or SIRT3 activator therapy in Friedreich's ataxia patients.

4.
Nat Rev Nephrol ; 13(4): 213-225, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28163307

RESUMO

The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+-sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.


Assuntos
Cardiopatias/etiologia , Nefropatias/etiologia , Mitocôndrias/fisiologia , NAD/fisiologia , Sirtuínas/fisiologia , Animais , Modelos Animais de Doenças , Coração/fisiologia , Humanos , Rim/fisiologia , Oxirredução , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 112(28): E3738-47, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124130

RESUMO

The mechanisms that are essential for the maintenance of nutrient status in breast milk are unclear. Our data demonstrate that the intestine via hypoxia-inducible factor (HIF)-2α is an essential regulatory mechanism for maintaining the quality of breast milk. During lactation, intestinal HIF-2α is highly increased, leading to an adaptive induction of apical and basolateral iron transport genes. Disruption of intestinal HIF-2α (but not HIF-1α) or the downstream target gene divalent metal transporter (DMT)-1 in lactating mothers did not alter systemic iron homeostasis in the mothers, but led to anemia, decreased growth, and truncal alopecia in pups which was restored following weaning. Moreover, pups born from mothers with a disruption of intestinal HIF-2α led to long-term cognitive defects. Cross-fostering experiments and micronutrient profiling of breast milk demonstrated that the defects observed were due to decreased maternal iron delivery via milk. Increasing intestinal iron absorption by activation of HIF-2α or parenteral administration of iron-dextran in HIF-2α knockout mothers ameliorated anemia and restored neonatal development and adult cognitive functions. The present work details the importance of breast milk iron in neonatal development and uncovers an unexpected molecular mechanism for the regulation of nutritional status of breast milk through intestinal HIF-2α.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Lactação , Anemia/etiologia , Anemia/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Feminino , Homeostase , Camundongos , Camundongos Knockout
6.
Proc Natl Acad Sci U S A ; 110(50): E4922-30, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24282296

RESUMO

Several distinct congenital disorders can lead to tissue-iron overload with anemia. Repeated blood transfusions are one of the major causes of iron overload in several of these disorders, including ß-thalassemia major, which is characterized by a defective ß-globin gene. In this state, hyperabsorption of iron is also observed and can significantly contribute to iron overload. In ß-thalassemia intermedia, which does not require blood transfusion for survival, hyperabsorption of iron is the leading cause of iron overload. The mechanism of increased iron absorption in ß-thalassemia is unclear. We definitively demonstrate, using genetic mouse models, that intestinal hypoxia-inducible factor-2α (HIF2α) and divalent metal transporter-1 (DMT1) are activated early in the pathogenesis of ß-thalassemia and are essential for excess iron accumulation in mouse models of ß-thalassemia. Moreover, thalassemic mice with established iron overload had significant improvement in tissue-iron levels and anemia following disruption of intestinal HIF2α. In addition to repeated blood transfusions and increased iron absorption, chronic hemolysis is the major cause of tissue-iron accumulation in anemic iron-overload disorders caused by hemolytic anemia. Mechanistic studies in a hemolytic anemia mouse model demonstrated that loss of intestinal HIF2α/DMT1 signaling led to decreased tissue-iron accumulation in the liver without worsening the anemia. These data demonstrate that dysregulation of intestinal hypoxia and HIF2α signaling is critical for progressive iron overload in ß-thalassemia and may be a novel therapeutic target in several anemic iron-overload disorders.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mucosa Intestinal/metabolismo , Sobrecarga de Ferro/etiologia , Talassemia beta/complicações , Análise de Variância , Animais , Western Blotting , Ferrocianetos , Sobrecarga de Ferro/metabolismo , Luciferases , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Talassemia beta/metabolismo
7.
Mol Cell Biol ; 32(19): 4068-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22869521

RESUMO

Hepcidin is a liver-derived peptide hormone and the master regulator of systemic iron homeostasis. Decreased hepcidin expression is a common feature in alcoholic liver disease (ALD) and in mouse models of ethanol loading. Dysregulation of hepcidin signaling in ALD leads to liver iron deposition, which is a major contributing factor to liver injury. The mechanism by which hepcidin is regulated following ethanol treatment is unclear. An increase in liver hypoxia was observed in an acute ethanol-induced liver injury model. The hypoxic response is controlled by a family of hypoxia-inducible transcription factors (HIFs), which are composed of an oxygen-regulated alpha subunit (HIFα) and a constitutively present beta subunit, aryl hydrocarbon receptor nuclear translocator (HIFß/Arnt). Disruption of liver HIF function reversed the repression of hepcidin following ethanol loading. Mouse models of liver HIF overexpression demonstrated that both HIF-1α and HIF-2α contribute to hepcidin repression in vivo. Ethanol treatment led to a decrease in CCAAT-enhancer-binding protein alpha (C/EBPα) protein expression in a HIF-dependent manner. Importantly, adenoviral rescue of C/EBPα in vivo ablated the hepcidin repression in response to ethanol treatment or HIF overexpression. These data provide novel insight into the regulation of hepcidin by hypoxia and indicate that targeting HIFs in the liver could be therapeutic in ALD.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Etanol/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem Celular , Regulação para Baixo , Eritropoese , Hepcidinas , Humanos , Hipóxia/metabolismo , Camundongos , Proteínas Smad/metabolismo
8.
Gastroenterology ; 140(7): 2044-55, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21419768

RESUMO

BACKGROUND & AIMS: Iron deficiency and iron overload affect over a billion people worldwide. Dietary iron absorption in the small intestine is required for systemic iron homeostasis. Ferroportin (FPN) is the only characterized, mammalian, basolateral iron exporter. Despite the importance of FPN in maintaining iron homeostasis, its in vivo mechanisms of regulation are unclear. METHODS: Systemic iron homeostasis was assessed in mice with intestine-specific disruption of genes encoding the von Hippel-Lindau tumor suppressor protein (Vhl), hypoxia-inducible factor (HIF)-1α, HIF-2α, and aryl hydrocarbon nuclear translocator (ARNT). RESULTS: We observed biphasic regulation of Fpn during iron deficiency. Fpn was rapidly induced under conditions of low iron, which required the transcription factor HIF-2α. Targeted disruption of HIF-2α in the intestine inhibited Fpn induction in mice with low iron, through loss of transcriptional activation. Analysis of the Fpn promoter and in vivo chromatin immunoprecipitation assays demonstrated that HIF-2α directly binds to the Fpn promoter and induces its expression, indicating a mechanism of transcriptional regulation of Fpn following changes in systemic levels of iron. During chronic iron deficiency, FPN protein levels also increased, via increased stability through a HIF-2α-independent pathway. CONCLUSIONS: In mice, expression of the gene that encodes Fpn and its protein levels are regulated by distinct pathways to provide a rapid and sustained response to acute and chronic iron deficiency. Therapies that target FPN might be developed for patients with iron-related disorders.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Mucosa Intestinal/metabolismo , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/metabolismo , Adaptação Fisiológica , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Células CACO-2 , Proteínas de Transporte de Cátions/genética , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Feminino , Genes Reporter , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Absorção Intestinal , Ferro/sangue , Distúrbios do Metabolismo do Ferro/genética , Ferro da Dieta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Regiões Promotoras Genéticas , Estabilidade Proteica , Fatores de Tempo , Transcrição Gênica , Transfecção , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...