Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 131(5): 566-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25113583

RESUMO

Serotonin (5-HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5-HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT turnover by a 5-HT2C receptor agonist (RO 60-0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA-A or GABA-B receptors in mice. Neither the GABA-B receptor antagonist phaclofen nor the specific genetic ablation of either GABA-B1a or GABA-B1b subunits altered the inhibitory effect of RO 60-0175, although 5-HT turnover was markedly decreased in GABA-B1a knock-out mice in both basal and stress conditions. In contrast, the 5-HT2C receptor-mediated inhibition of 5-HT turnover was reduced by the GABA-A receptor antagonist bicuculline. However, a significant effect of 5-HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA-A receptors. It can be inferred that non-α3 subunit-containing GABA-A receptors, but not GABA-B receptors, mediate the 5-HT2C -induced inhibition of stress-induced increase in hippocampal 5-HT turnover in mice.


Assuntos
GABAérgicos/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de GABA/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Animais , Modelos Animais de Doenças , Etilaminas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA/deficiência , Serotonina/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia
2.
Neurosci Biobehav Rev ; 42: 208-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24631644

RESUMO

Evidence from the various sources indicates alterations in 5-HT2C receptor functions in anxiety, depression and suicide, and other stress-related disorders treated with antidepressant drugs. Although the notion of a 5-HT2C receptor desensitization following antidepressant treatments is rather well anchored in the literature, this concept is mainly based on in vitro assays and/or behavioral assays (hypolocomotion, hyperthermia) that have poor relevance to anxio-depressive disorders. Our objective herein is to provide a comprehensive overview of the studies that have assessed the effects of antidepressant drugs on 5-HT2C receptors. Relevant molecular (second messengers, editing), neurochemical (receptor binding and mRNA levels), physiological (5-HT2C receptor-induced hyperthermia and hormone release), behavioral (5-HT2C receptor-induced changes in feeding, anxiety, defense and motor activity) data are summarized and discussed. Setting the record straight about drug-induced changes in 5-HT2C receptor function in specific brain regions should help to determine which pharmacotherapeutic strategy is best for affective and anxiety disorders.


Assuntos
Antidepressivos/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Humanos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/fisiopatologia
3.
Neuropsychopharmacology ; 36(12): 2538-50, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21814181

RESUMO

The vesicular monoamine transporter type 2 gene (VMAT2) has a crucial role in the storage and synaptic release of all monoamines, including serotonin (5-HT). To evaluate the specific role of VMAT2 in 5-HT neurons, we produced a conditional ablation of VMAT2 under control of the serotonin transporter (slc6a4) promoter. VMAT2(sert-cre) mice showed a major (-95%) depletion of 5-HT levels in the brain with no major alterations in other monoamines. Raphe neurons contained no 5-HT immunoreactivity in VMAT2(sert-cre) mice but developed normal innervations, as assessed by both tryptophan hydroxylase 2 and 5-HT transporter labeling. Increased 5-HT(1A) autoreceptor coupling to G protein, as assessed with agonist-stimulated [(35)S]GTP-γ-S binding, was observed in the raphe area, indicating an adaptive change to reduced 5-HT transmission. Behavioral evaluation in adult VMAT2(sert-cre) mice showed an increase in escape-like reactions in response to tail suspension and anxiolytic-like response in the novelty-suppressed feeding test. In an aversive ultrasound-induced defense paradigm, VMAT2(sert-cre) mice displayed a major increase in escape-like behaviors. Wild-type-like defense phenotype could be rescued by replenishing intracellular 5-HT stores with chronic pargyline (a monoamine oxidase inhibitor) treatment. Pargyline also allowed some form of 5-HT release, although in reduced amounts, in synaptosomes from VMAT2(sert-cre) mouse brain. These findings are coherent with the notion that 5-HT has an important role in anxiety, and provide new insights into the role of endogenous 5-HT in defense behaviors.


Assuntos
Reação de Fuga/fisiologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , Serotonina/deficiência , Serotonina/genética , Índice de Gravidade de Doença , Proteínas Vesiculares de Transporte de Monoamina/deficiência , Proteínas Vesiculares de Transporte de Monoamina/genética , Animais , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
J Neurochem ; 115(2): 438-49, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20796171

RESUMO

Stress is known to activate the central 5-hydroxytryptamine (5-HT) system, and this is probably part of a coping response involving several 5-HT receptors. Although 5-HT(2C) receptors are well known to be implicated in anxiety, their participation in stress-induced changes had not been investigated in parallel at both behavioral and neurochemical levels. We show here that the preferential 5-HT(2C) receptor agonist, m-chlorophenylpiperazine, as well as restraint stress increased anxiety in the mouse social interaction test. The selective 5-HT(2C) receptor antagonist, SB 242,084, prevented both of these anxiogenic effects. Restraint stress increased 5-HT turnover in various brain areas, and this effect was prevented by the 5-HT(2B/2C) receptor agonist RO 60-0175 (1 mg/kg), but not the preferential 5-HT(2A) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (1 mg/kg), and in contrast potentiated by SB 242,084 (1 mg/kg), which also blocked the effect of RO 60-0175. Using microdialysis, RO 60-0175 was shown to inhibit cortical 5-HT overflow in stressed mice when 5-HT reuptake was blocked locally. Chronic paroxetine prevented both the anxiogenic effect of m-chlorophenylpiperazine and the inhibitory effect of RO 60-0175 on locomotion and stress-induced increase in 5-HT turnover. The anxiolytic action of chronic paroxetine might be associated with an enhancement of 5-HT neurotransmission caused by a decreased 5-HT(2C) receptor-mediated inhibition of stress-induced increase in 5-HT release.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Encéfalo/efeitos dos fármacos , Paroxetina/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Serotonina/metabolismo , Estresse Psicológico , Anfetaminas/farmacologia , Análise de Variância , Animais , Comportamento Animal , Encéfalo/metabolismo , Etilaminas/farmacologia , Líquido Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Piperazinas/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA