Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828821

RESUMO

The aim of this study was to understand (i) the in vivo mastication behaviour of cooked black beans (chewing duration, texture perception, oral bolus particle size, microstructure, and salivary α-amylase) and (ii) the in vitro digestibility of starch and protein of in vivo-generated black bean oral bolus under simulated gastrointestinal condition. The beans were pre-treated using pulsed electric field (PEF) with and without calcium chloride (CaCl2) addition prior to cooking. The surface response model based on least square was used to optimise PEF processing condition in order to achieve the same texture properties of cooked legumes except for chewiness. In vivo mastication behaviour of the participants (n = 17) was characterized for the particle size of the resulting bolus, their salivary α-amylase activity, and the total chewing duration before the bolus was deemed ready for swallowing. In vitro starch and protein digestibility of the masticated bolus generated in vivo by each participant along the gastrointestinal phase were then studied. This study found two distinct groups of chewers-fast and slow chewers who masticated all black bean beans, on average, for <25 and >29 s, respectively, to achieve a bolus ready for swallowing. Longer durations of chewing resulted in boluses with small-sized particles (majorly composed of a higher number of broken-down cotyledons (2-5 mm2 particle size), fewer seed coats (5-13 mm2 particle size)), and higher activity of α-amylase. Therefore, slow chewers consistently exhibited a higher in vitro digestibility of both the starch and protein of processed black beans compared to fast chewers. Despite such distinct difference in the nutritional implication for both groups of chewers, the in vivo masticated oral bolus generated by fast chewers revealed that the processing conditions involving the PEF and addition of CaCl2 of black beans appeared to significantly (p < 0.05) enhance the in vitro digestibility of protein (by two-fold compared to untreated samples) without stimulating a considerable increase in the starch digestibility. These findings clearly demonstrated that the food structure of cooked black beans created through PEF treatment combined with masticatory action has the potential to modulate a faster hydrolysis of protein during gastrointestinal digestion, thus offering an opportunity to upgrade the quality of legume protein intake in the daily diet.

2.
Environ Technol ; 42(16): 2461-2477, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31825744

RESUMO

Cucumber peel as a bead was examined for its ability to remove heavy metals from drinking water. Deionised laboratory water was spiked with seven toxic ions namely, arsenic, cadmium, chromium, copper, mercury, lead and nickel at 0.1 mg L-1 and kinetic studies were performed over 72 h. Kinetic data were modelled using film diffusion, pore diffusion, Weber-Morris, pseudo-first-order, pseudo-second-order and Elovich equation. The bead surface was imaged before and after biosorption using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS). Results indicated that different ions contained in a multi-ion solution were biosorbed by different mechanisms and at different rates. Equilibrium biosorption for Cd, Hg and Ni was ∼91, 90 and 67%, respectively, at 24 h. These ions diffused through the pores of the bead, as they were not identified by EDS, and their biosorption increased with an increase in temperature. The least biosorbed ions were As and Cr with ∼21 and 17% equilibrium biosorption, respectively. The removal of only Cu, Hg, Pb and Ni was pH-dependent. Cucumber peel beads removed all spiked ions from real drinking water collected near the Macraes gold mine in New Zealand, but the biosorption percentage was lower for Cd, Cu, Pb and Ni compared to spiked deionised laboratory water. The results of this study suggest that cucumber peel when immobilised on a sodium alginate bead can be used as a potential biosorbent for the removal of multiple toxic ions from drinking water and their use warrants further examination in contaminated drinking water.


Assuntos
Cucumis sativus , Água Potável , Poluentes Químicos da Água , Adsorção , Cádmio , Descontaminação , Concentração de Íons de Hidrogênio , Íons , Cinética , Nova Zelândia , Poluentes Químicos da Água/análise
3.
Biotechnol Bioeng ; 117(3): 736-747, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758543

RESUMO

In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético , Atorvastatina/toxicidade , Células Cultivadas , Doxorrubicina/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofias Musculares/metabolismo
4.
APL Bioeng ; 3(3): 036103, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31431939

RESUMO

Cardiac ischemic events increase the risk for arrhythmia, heart attack, heart failure, and death and are the leading mortality condition globally. Reperfusion therapy is the first line of treatment for this condition, and although it significantly reduces mortality, cardiac ischemia remains a significant threat. New therapeutic strategies are under investigation to improve the ischemia survival rate; however, the current preclinical models to validate these fail to predict the human outcome. We report the development of a functional human cardiac in vitro system for the study of conduction velocity under ischemic conditions. The system is a bioMEMs platform formed by human iPSC derived cardiomyocytes patterned on microelectrode arrays and maintained in serum-free conditions. Electrical activity changes of conduction velocity, beat frequency, and QT interval (the QT-interval measures the period from onset of depolarization to the completion of repolarization) or action potential length can be evaluated over time and under the stress of ischemia. The optimized protocol induces >80% reduction in conduction velocity, after a 4 h depletion period, and a partial recovery after 72 h of oxygen and nutrient reintroduction. The sensitivity of the platform for pharmacological interventions was challenged with a gap junction modulator (ZP1609), known to prevent or delay the depression of conduction velocity induced by ischemic metabolic stress. ZP1609 significantly improved the drastic drop in conduction velocity and enabled a greater recovery. This model represents a new preclinical platform for studying cardiac ischemia with human cells, which does not rely on biomarker analysis and has the potential for screening novel cardioprotective drugs with readouts that are closer to the measured clinical parameters.

5.
Sci Transl Med ; 11(497)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217335

RESUMO

A pumpless, reconfigurable, multi-organ-on-a-chip system containing recirculating serum-free medium can be used to predict preclinical on-target efficacy, metabolic conversion, and measurement of off-target toxicity of drugs using functional biological microelectromechanical systems. In the first configuration of the system, primary human hepatocytes were cultured with two cancer-derived human bone marrow cell lines for antileukemia drug analysis in which diclofenac and imatinib demonstrated a cytostatic effect on bone marrow cancer proliferation. Liver viability was not affected by imatinib; however, diclofenac reduced liver viability by 30%. The second configuration housed a multidrug-resistant vulva cancer line, a non-multidrug-resistant breast cancer line, primary hepatocytes, and induced pluripotent stem cell-derived cardiomyocytes. Tamoxifen reduced viability of the breast cancer cells only after metabolite generation but did not affect the vulva cancer cells except when coadministered with verapamil, a permeability glycoprotein inhibitor. Both tamoxifen alone and coadministration with verapamil produced off-target cardiac effects as indicated by a reduction of contractile force, beat frequency, and conduction velocity but did not affect viability. These systems demonstrate the utility of a human cell-based in vitro culture system to evaluate both on-target efficacy and off-target toxicity for parent drugs and their metabolites; these systems can augment and reduce the use of animals and increase the efficiency of drug evaluations in preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diclofenaco/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Dispositivos Lab-On-A-Chip , Tamoxifeno/farmacologia , Verapamil/farmacologia
6.
Adv Funct Mater ; 29(8)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35586798

RESUMO

The goal of human-on-a-chip systems is to capture multi-organ complexity and predict the human response to compounds within physiologically relevant platforms. The generation and characterization of such systems is currently a focal point of research given the long-standing inadequacies of conventional techniques for predicting human outcome. Functional systems can measure and quantify key cellular mechanisms that correlate with the physiological status of a tissue, and can be used to evaluate therapeutic challenges utilizing many of the same endpoints used in animal experiments or clinical trials. Culturing multiple organ compartments in a platform creates a more physiologic environment (organ-organ communication). Here is reported a human 4-organ system composed of heart, liver, skeletal muscle and nervous system modules that maintains cellular viability and function over 28 days in serum-free conditions using a pumpless system. The integration of non-invasive electrical evaluation of neurons and cardiac cells and mechanical determination of cardiac and skeletal muscle contraction allows the monitoring of cellular function especially for chronic toxicity studies in vitro. The 28 day period is the minimum timeframe for animal studies to evaluate repeat dose toxicity. This technology could be a relevant alternative to animal testing by monitoring multi-organ function upon long term chemical exposure.

7.
Biomaterials ; 182: 176-190, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30130706

RESUMO

Regulation of cosmetic testing and poor predictivity of preclinical drug studies has spurred efforts to develop new methods for systemic toxicity. Current in vitro assays do not fully represent physiology, often lacking xenobiotic metabolism. Functional human multi-organ systems containing iPSC derived cardiomyocytes and primary hepatocytes were maintained under flow using a low-volume pumpless system in a serum-free medium. The functional readouts for contractile force and electrical conductivity enabled the non-invasive study of cardiac function. The presence of the hepatocytes in the system induced cardiotoxic effects from cyclophosphamide and reduced them for terfenadine due to drug metabolism, as expected from each compound's pharmacology. A computational fluid dynamics simulation enabled the prediction of terfenadine-fexofenadine pharmacokinetics, which was validated by HPLC-MS. This in vitro platform recapitulates primary aspects of the in vivo crosstalk between heart and liver and enables pharmacological studies, involving both organs in a single in vitro platform. The system enables non-invasive readouts of cardiotoxicity of drugs and their metabolites. Hepatotoxicity can also be evaluated by biomarker analysis and change in metabolic function. Integration of metabolic function in toxicology models can improve adverse effects prediction in preclinical studies and this system could also be used for chronic studies as well.


Assuntos
Ciclofosfamida/toxicidade , Hepatócitos/efeitos dos fármacos , Antagonistas não Sedativos dos Receptores H1 da Histamina/toxicidade , Imunossupressores/toxicidade , Dispositivos Lab-On-A-Chip , Miócitos Cardíacos/efeitos dos fármacos , Terfenadina/toxicidade , Cardiotoxicidade/etiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/instrumentação , Ciclofosfamida/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Hepatócitos/citologia , Hepatócitos/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/metabolismo , Humanos , Imunossupressores/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Terfenadina/metabolismo
8.
ACS Chem Neurosci ; 9(7): 1693-1701, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29746089

RESUMO

Alzheimer's disease (AD) is characterized by slow, progressive neurodegeneration leading to severe neurological impairment, but current drug development efforts are limited by the lack of robust, human-based disease models. Amyloid-ß (Aß) is known to play an integral role in AD progression as it has been shown to interfere with neurological function. However, studies into AD pathology commonly apply Aß to neurons for short durations at nonphysiological concentrations to induce an exaggerated dysfunctional phenotype. Such methods are unlikely to elucidate early stage disease dysfunction, when treatment is still possible, since damage to neurons by these high concentrations is extensive. In this study, we investigated chronic, pathologically relevant Aß oligomer concentrations to induce an electrophysiological phenotype that is more representative of early AD progression compared to an acute high-dose application in human cortical neurons. The high, acute oligomer dose resulted in severe neuronal toxicity as well as upregulation of tau and phosphorylated tau. Chronic, low-dose treatment produced significant functional impairment without increased cell death or accumulation of tau protein. This in vitro phenotype more closely mirrors the status of early stage neural decline in AD pathology and could provide a valuable tool to further understanding of early stage AD pathophysiology and for screening potential therapeutic compounds.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Sobrevivência Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Potenciais da Membrana/fisiologia , Neurônios/patologia , Técnicas de Patch-Clamp , Proteínas tau/metabolismo
9.
Biomaterials ; 166: 64-78, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547745

RESUMO

There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX® and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs.


Assuntos
Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Junção Neuromuscular , Engenharia Tecidual , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Estimulação Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Contração Muscular , Fibras Musculares Esqueléticas/citologia
10.
Biomaterials ; 122: 179-187, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129596

RESUMO

Muscle spindles are sensory organs embedded in the belly of skeletal muscles that serve as mechanoreceptors detecting static and dynamic information about muscle length and stretch. Through their connection with proprioceptive sensory neurons, sensation of axial body position and muscle movement are transmitted to the central nervous system. Impairment of this sensory circuit causes motor deficits and has been linked to a wide range of diseases. To date, no defined human-based in vitro model of the proprioceptive sensory circuit has been developed. The goal of this study was to develop a human-based in vitro muscle sensory circuit utilizing human stem cells. A serum-free medium was developed to drive the induction of intrafusal fibers from human satellite cells by actuation of a neuregulin signaling pathway. Both bag and chain intrafusal fibers were generated and subsequently validated by phase microscopy and immunocytochemistry. When co-cultured with proprioceptive sensory neurons derived from human neuroprogenitors, mechanosensory nerve terminal structural features with intrafusal fibers were demonstrated. Most importantly, patch-clamp electrophysiological analysis of the intrafusal fibers indicated repetitive firing of human intrafusal fibers, which has not been observed in human extrafusal fibers.


Assuntos
Mecanotransdução Celular/fisiologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Propriocepção/fisiologia , Reflexo de Estiramento/fisiologia , Células Receptoras Sensoriais/fisiologia , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Fibras Musculares Esqueléticas/citologia , Células Receptoras Sensoriais/citologia
11.
Int J Pharm Pharm Res ; 11(1): 348-374, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30637316

RESUMO

There has been a tremendous amount of research into the causes of Amyotrophic Lateral Sclerosis (ALS), but yet very few treatment options beyond amelioration of symptoms. A holistic approach has shown anecdotal evidence of slowing disease progression and this treatment, known as the Deanna protocol (DP), postulates that ALS is a metabolic disease caused by glutamate that induces toxicity. In this study, glutamate exposure to human motoneurons was investigated and found not to significantly affect cell viability or electrophysiological properties. However, varicosities were observed in axons suggestive of transport impairment that was dose dependent for glutamate exposure. Surprisingly, a subset of the components of the DP eliminated these varicosities. To verify this finding a human SOD1 patient-derived iPSC line was examined and significant numbers of varicosities were present without glutamate treatment, compared to the iPSC control, indicating the possibility of a common mechanism despite different origins for the varicosities. Importantly, the DP ameliorated these varicosities by over 70% in the patient derived cells as well. These results are consistent with much of the literature on ALS and give hope for treatment not only for arresting disease progression using compounds considered safe but also the potential for restoration of function.

12.
Sci Rep ; 6: 20030, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837601

RESUMO

We report on a functional human model to evaluate multi-organ toxicity in a 4-organ system under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 14 days. Computer simulations of the platform established flow rates and resultant shear stress within accepted ranges. Viability of the system was demonstrated for 14 days as well as functional activity of cardiac, muscle, neuronal and liver modules. The pharmacological relevance of the integrated modules were evaluated for their response at 7 days to 5 drugs with known side effects after a 48 hour drug treatment regime. The results of all drug treatments were in general agreement with published toxicity results from human and animal data. The presented phenotypic culture model exhibits a multi-organ toxicity response, representing the next generation of in vitro systems, and constitutes a step towards an in vitro "human-on-a-chip" assay for systemic toxicity screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fígado/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro , Células Hep G2 , Humanos , Células-Tronco Pluripotentes Induzidas , Dispositivos Lab-On-A-Chip , Fígado/citologia , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Miócitos Cardíacos/citologia , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...