Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(32): e2302652, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37787152

RESUMO

Modern paints and coatings are designed for a variety of applications, ranging from fine art to extraterrestrial thermal control. These systems can be engineered to provide lasting color, but there are a limited number of materials that can undergo transient changes in their visual appearance in response to external stimuli without requirements for advanced fabrication strategies. The authors describe color-changing paint formulations that leverage the redox-dependent absorption profile of xanthommatin, a small-molecule colorant found throughout biology, and the electronic properties of titanium dioxide, a ubiquitous whitening agent in commercial coatings. This combination yields reversible photoreduction upon exposure to sunlight, shifting from the oxidized (yellow) form of xanthommatin, to the reduced (red) state. The extent of photoreduction is dependent on the loading density and size of titanium dioxide particles, generating changes in hue angle as large as 77% upon irradiation. These coatings can be blended with non-responsive supplemental colorants to expand the accessible color palette, and irradiated through masks to create transient, disappearing artwork. These formulations demonstrate energy-efficient photochromism using a simple combination of a redox-active dye and metal oxide semiconductor, highlighting the utility of these materials for the development of optically dynamic light-harvesting materials.

2.
ACS Biomater Sci Eng ; 9(7): 3962-3971, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506101

RESUMO

The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.


Assuntos
Colágeno , Colágenos Fibrilares , Engenharia Tecidual , Colágeno Tipo I
3.
J Mater Chem B ; 10(36): 7052-7061, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36047129

RESUMO

Efficiently manipulating and reproducing collagen (COL) alignment in vitro remains challenging because many of the fundamental mechanisms underlying and guiding the alignment process are not known. We reconcile experiments and coarse-grained molecular dynamics simulations to investigate the mechanical behaviors of a growing COL scaffold and assay how changes in fiber alignment and various cross-linking densities impact their alignment dynamics under shear flow. We find higher cross-link densities and alignment levels significantly enhance the apparent tensile/shear moduli and strength of a bulk COL system, suggesting potential measures to facilitate the design of stronger COL based materials. Since fibril alignment plays a key factor in scaffold mechanics, we next investigate the molecular mechanism behind fibril alignment with Couette flow by computationally investigating the effects of COL's structural properties such as chain lengths, number of chains, tethering conditions, and initial COL conformations on the COL's final alignment level. Our computations suggest that longer chain lengths, more chains, greater amounts of tethering, and initial anisotropic COL conformations benefit the final alignment, but the effect of chain lengths may be more dominant over other factors. These results provide important parameters for consideration in manufacturing COL-based scaffolds where alignment and cross-linking are necessary for regulating performance.


Assuntos
Colágeno , Alicerces Teciduais , Anisotropia , Colágeno/química , Alicerces Teciduais/química
4.
Bioelectricity ; 2(2): 186-197, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471846

RESUMO

Background: Collagenous tissues are composed of precisely oriented, tightly packed collagen fibril bundles to confer the maximal strength within the smallest volume. While this compact form benefits mobility, it consequentially restricts vascularity and cell density to a minimally viable level in some regions. These tissues reside in a homeostatic state with an unstable equilibrium, where perturbations to structure or molecular milieu cause descension into a long-term compromised state. Several studies have shown that glycosaminoglycans are key molecules required for healthy tissue maintenance. Our long-term goal is to determine if glycosaminoglycans serve a critical function of stabilizing soluble monomeric collagen in the interstitial fluid that bathes tissue for immediate availability in tissue development and repair in vivo. Materials and Methods: To test glycosaminoglycan and collagen interactions at the most fundamental level, we have explored the effect of the monosaccharides that populate the glycosaminoglycans of the extracellular matrix on collagen assembly kinetics, pre-established matrix stability, and collagen incorporation into a preassembled matrix. Results: Results showed that monosaccharides increased the threshold concentration required for spontaneous polymerization by at least three orders of magnitude. When the monosaccharides were introduced to a pre-existing collagen network, fibrillar dissociation was undetectable. Fluorescent-labeling studies illustrated that in the presence of the saccharide solution, soluble collagen maintains the functional capacity to integrate into a pre-existing network. Conclusion: This work demonstrates a feasible role for glycosaminoglycans in supporting tissue remodeling and highlights the potential importance of age-related deterioration of glycosaminoglycan biosynthesis in reference to the homeostasis of collagen-based tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...