Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0283439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36972282

RESUMO

The alteration of environmental conditions has two major outcomes on the demographics of living organisms: population decline of the common species and extinction of the rarest ones. Halting the decline of abundant species as well as the erosion of biodiversity require solutions that may be mismatched, despite being rooted in similar causes. In this study, we demonstrate how rank abundance distribution (RAD) models are mathematical representations of a dominance-diversity dilemma. Across 4,375 animal communities from a range of taxonomic groups, we found that a reversed RAD model correctly predicts species richness, based solely on the relative dominance of the most abundant species in a community and the total number of individuals. Overall, predictions from this RAD model explained 69% of the variance in species richness, compared to 20% explained by simply regressing species richness on the relative dominance of the most abundant species. Using the reversed RAD model, we illustrate how species richness is co-limited by the total abundance of a community and the relative dominance of the most common species. Our results highlight an intrinsic trade-off between species richness and dominance that is present in the structure of RAD models and real-world animal community data. This dominance-diversity dilemma suggests that withdrawing individuals from abundant populations might contribute to the conservation of species richness. However, we posit that the positive effect of harvesting on biodiversity is often offset by exploitation practices with negative collateral consequences, such as habitat destruction or species bycatches.


Assuntos
Biodiversidade , Ecossistema , Animais , Biologia
2.
Animals (Basel) ; 12(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35953912

RESUMO

Small landholders who grow sweet maize for the fresh produce market often also have cattle with little access to winter forage. Grazing cover crops with sweet maize stover can potentially increase the available nutritive value. A 3-year randomized complete block study with three replicates at New Mexico State University's Alcalde Sustainable Agriculture Science Center compared sweet maize (Zea mays var. rugosa) with sweet maize relay intercropped at the V7−9 stage with cereal rye (rye: Secale cereale L.) or hairy vetch (vetch: Vicia villosa Roth) for early spring grazing. Intercropping the rye or hairy vetch into sweet maize did not influence the sweet maize stover biomass yield or nutritive value after the winter. The dry matter (DM) yield and crude protein (CP) concentration of hairy vetch biomass was greater (p < 0.01) than rye biomass (1.46 vs. 2.94 Mg DM ha−1 for rye and hairy vetch, respectively, and 145 vs. 193 g CP kg−1 for rye and hairy vetch, respectively). Average daily gains by yearling cattle were not different when grazing maize−rye or maize−vetch. Producers should consider the spring planting timing of the primary crop and the initiation of grazing in the winter or the spring to maximize the utilization of the previous crop's residue (stover), as well as the cover crop itself.

3.
Ecol Appl ; 30(4): e02074, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31965659

RESUMO

The ecological literature reports little empirical evidence from biodiversity-ecosystem functioning (BEF) experiments in wetland systems, even though wetlands are widely known for their water filtering capacity. Experiments comparing the effect of plant monocultures and mixtures on water quality to improve pollutant removal efficiency in treatment wetlands share the characteristics of classical BEF experiments, and so could provide insights for wetland management. To add to our understanding of BEF relationships in wetlands, we evaluated plant diversity effects on water purification through a meta-analysis of freshwater experimental wetlands comparing monocultures to mixtures. We found 28 studies that matched our criteria for BEF analysis, for a total of 561 diversity effects on pollutant removal. Overall, the meta-analysis shows no significant effect of plant richness on removal of total suspended solids, but a positive effect on chemical oxygen demand and total nitrogen removal, and a marginal effect on phosphorus removal. Thus, the results of this meta-analysis are consistent with reports of an overall positive biodiversity effect on ecosystem properties. An analysis of moderator variables shows that the experimental context (size of the experimental units, nutrient load, duration of the experiment) does not explain much of the residual variance. For pollutants that benefit from a positive plant richness effects on removal, mixtures do not perform better than the best monoculture. We found no evidence that plant richness effects are due to functional complementarity among species rather than to the presence of particularly efficient species. Complementarity effects may be less prevalent in highly productive, nutrient-rich wetlands, compared to nutrient-limited environments such as natural grasslands. Although findings must be confirmed by long-term field experiments under natural conditions, result from experimental wetland systems may contribute to a better understanding of biodiversity effect on ecosystem functions in wetlands, in addition to guide practices in natural wetland restoration and the use of constructed wetlands for water treatment.


Assuntos
Qualidade da Água , Áreas Alagadas , Ecossistema , Fósforo/análise , Plantas
4.
PeerJ ; 3: e849, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25802814

RESUMO

Aboveground production in terrestrial plant communities is commonly expressed in amount of carbon, or biomass, per unit surface. Alternatively, expressing production per unit volume allows the comparison of communities by their fundamental capacities in packing carbon. In this work we reanalyzed published data from more than 900 plant communities across nine ecosystems to show that standing dry biomass per unit volume (biomass packing) consistently averages around 1 kg/m(3) and rarely exceeds 5 kg/m(3) across ecosystem types. Furthermore, we examined how empirical relationships between aboveground production and plant species richness are modified when standing biomass is expressed per unit volume rather than surface. We propose that biomass packing emphasizes species coexistence mechanisms and may be an indicator of resource use efficiency in plant communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...