Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38441267

RESUMO

First-principles molecular dynamics combined with the approach-to-equilibrium molecular dynamics methodology is employed to calculate the thermal conductivity of non-stoichiometric amorphous SiN. This is achieved by implementing thermal transients in five distinct models of different sizes along the direction of the heat transport. Such models have identical structural features and are representative of the same material, thereby allowing for a reliable analysis of thermal conductivity trends as a function of the relevant cell dimension. In line with the known physical law of heat propagation at short scale, the thermal conductivity increases in size with the direction of heat transport. The observed behavior is rationalized accounting for previous results on crystalline and amorphous materials, thus providing a unified description holding for a large class of materials and spanning a wide range of heat propagation lengths.

2.
Phys Chem Chem Phys ; 25(22): 15539-15546, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37252726

RESUMO

Poly(3-hexylthiophene) (P3HT) is a polymer used in organic solar cells as a light absorber and an electron donor. Photogenerated excitons diffuse and dissociate into free charge carriers provided they reach the absorber boundaries. The device efficiency is therefore dependent on the exciton diffusion. Although measurements can be performed for example by time-resolved photoluminescence, a quantitative modeling is highly desirable to get an insight into the relationship between the atomic structure at finite temperature and the diffusion coefficient of the exciton. This is the objective of the present work, achieved by resorting to first-principles molecular dynamics in combination with the restricted open-shell approach to model the singlet excited state. The maximally localized Wannier functions and their centers are used to monitor and localize the electron and the hole along the dynamics. The resulting diffusion coefficient is in close agreement with available measurements.

3.
J Chem Phys ; 158(8): 084504, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859083

RESUMO

Thermal properties are expected to be sensitive to the network topology, and however, no clearcut information is available on how the thermal conductivity of amorphous systems is affected by details of the atomic structure. To address this issue, we use as a target system a phase-change amorphous material (i.e., Ge2Sb2Te5) simulated by first-principles molecular dynamics combined with the approach-to-equilibrium molecular dynamics technique to access the thermal conductivity. Within the density-functional theory, we employed two models sharing the same exchange-correlation functional but differing in the pseudopotential (PP) implementation [namely, Trouiller-Martins (TM) and Goedecker, Teter, and Hutter (GTH)]. They are both compatible with experimental data, and however, the TM PP construction results in a Ge tetrahedral environment largely predominant over the octahedral one, although the proportion of tetrahedra is considerably smaller when the GTH PP is used. We show that the difference in the local structure between TM and GTH models impacts the vibrational density of states while the thermal conductivity does not feature any appreciable sensitivity to such details. This behavior is rationalized in terms of extended vibrational modes.

4.
Molecules ; 27(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558168

RESUMO

First-principles molecular dynamics (FPMD) calculations were performed on liquid GeSe4 with the aim of inferring the impact of dispersion (van der Waals, vdW) forces on the structural properties. Different expressions for the dispersion forces were employed, allowing us to draw conclusions on their performances in a comparative fashion. These results supersede previous FPMD calculations obtained in smaller systems and shorter time trajectories by providing data of unprecedented accuracy. We obtained a substantial agreement with experiments for the structure factor regardless of the vdW scheme employed. This objective was achieved by using (in addition to FPMD with no dispersion forces) a selection of vdW schemes available within density functional theory. The first two are due to Grimme, D2 and D3, and the third one is devised within the so-called maximally localized Wannier functions approach (MLWF). D3 results feature a sizeable disagreement in real space with D2 and MLWF in terms of the partial and total pair correlation functions as well as the coordination numbers. More strikingly, total and partial structure factors calculated with D3 exhibit an unexpected sharp increase at low k. This peculiarity goes along with large void regions within the network, standing for a phase separation of indecipherable physical meaning. In view of these findings, further evidence of unconventional structural properties found by employing D3 is presented by relying on results obtained for a complex ionic liquid supported on a solid surface. The novelty of our study is multifold: new, reliable FPMD data for a prototypical disordered network system, convincing agreement with experimental data and assessment of the impact of dispersion forces, with emphasis on the intriguing behavior of one specific recipe and the discovery of common structural features shared by drastically dissimilar physical systems when the D3 vdW scheme is employed.

5.
RSC Adv ; 11(18): 10747-10752, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423557

RESUMO

Achieving a precise understanding of nanoscale thermal transport in phase change materials (PCMs), such as Ge2Sb2Te5 (GST), is the key of thermal management in nanoelectronics, photonic and neuromorphic applications using non-volatile memories. By resorting to a first-principles approach to calculate the thermal conductivity of amorphous GST, we found that size effects and heat transport via propagative modes persist well beyond extended range order distances typical of disordered network-forming materials. Values obtained are in quantitative agreement with the experimental data, by revealing a strong size dependence of the thermal conductivity down to the 1.7-10 nm range, fully covering the scale of current PCMs-based devices. In particular, a reduction of thermal conductivity as large as 75% occurs for dimensions lying below 2 nm. These results provide a quantitative description of the thermal properties of amorphous GST at the nanoscale and are expected to underpin the development of PCM-based device applications.

6.
J Phys Chem B ; 124(49): 11273-11279, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33253572

RESUMO

The atomic structure of glassy GeTe4 is obtained in the framework of first-principles molecular dynamics (FPMD) by considering five different approaches for the description of the electronic structure within density functional theory (DFT). Among these schemes, one is not corrected by accounting for the dispersion forces and it is based on the BLYP exchange-correlation (XC) functional, while all of the others consider the dispersion forces according to different theoretical strategies. In particular, by maintaining the BLYP expression for the XC functional, two of them (BLYP-D2 and BLYP-D3) exploit the Grimme expressions for the dispersion forces, while the fourth scheme is based on the maximally localized Wannier functions (MLWFs). Finally, we also considered the rVV10 functional constructed to include seamlessly the dispersion part. Our results point out the better performances of BLYP-D3 and MLWF in terms of comparison with experimental data for the total pair correlation functions, with BLYP-D2 and rVV10 being closer to the uncorrected BLYP data. The implications of such findings are discussed by considering the overall limited impact of dispersion forces on the atomic structure of glassy GeTe4.

7.
J Chem Phys ; 153(7): 074704, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828112

RESUMO

The approach-to-equilibrium molecular dynamics (AEMD) methodology is applied in combination with first-principles molecular dynamics to investigate the thermal transfer between two silicon blocks connected by a molecular layer. Our configuration consists of alkanes molecules strongly coupled to the silicon surfaces via covalent bonds. In phase 1 of AEMD, the two Si blocks are thermalized at high and low temperatures to form the hot and cold reservoirs. During phase 2 of AEMD, a transfer between reservoirs occurs until thermal equilibrium is reached. The transfer across the interface dominates the transient over heat conduction within the reservoirs. The value of the thermal interface conductance is in agreement with the experimental data obtained for analogous bonding cases between molecules and reservoirs. The dependence on the length of the thermal interface resistance features two contributions. One is constant (the resistance at the silicon/molecule interface), while the other varies linearly with the length of the molecular chains (diffusive transport). The corresponding value of the thermal conductivity agrees well with experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...