Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 77(8): 819-834, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35838752

RESUMO

Through a systematic scanning of 235U and 238U emission lines between 280 nm and 745 nm, the optimal emission line for direct gaseous uranium hexafluoride (UF6) enrichment assay using laser-induced breakdown spectroscopy (LIBS) was found. Screening for spectral features that are potentially useful for U isotopic analysis was gauged from the magnitude of the 235U-238U isotopic shift and the signal-to-background ratio of the emission line through a parameter termed ΔSBR 235U-238U. The ΔSBR spectrum shows peaks at wavelength positions where there are strong lines with significant 235U-238U shifts. The screening identified 13 spectral-window candidates, which were down selected based on their overall accuracy in predicting the 235U enrichment of three UF6 samples of natural (0.720 atom% 235U) and low-enriched (4.675 atom% and 9.157 atom% 235U) grades. The U(I) 646.498 nm emission line, with a determined 235U-238U isotopic shift of -17.7 pm, was found to be the optimal spectral window for direct UF6 enrichment assay. The root mean square error for enrichment assays on the three natural and low-enriched UF6 samples, with each sample measured in six replicates, was 0.31% in absolute 235U content. Each measurement comprised LIBS signals accumulated from 3000 laser shots. The analytical bias and precision were better than 0.5% and 0.3%, respectively, in absolute [235U/(235U + 238U)] ratios. Specific for the two low-enriched UF6 samples, the relative standard deviations from six replicated measurements were around 2%.

2.
Front Chem ; 10: 1078668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712985

RESUMO

The reprocessing used nuclear fuel (UNF) releases volatile fission and activation products, including 129I, into the off-gas of a processing plant. Mitigation of the release of vapor phase radionuclides is necessary for meeting regulatory requirements in the United States and other countries. In an aqueous reprocessing plant, volatile radioiodine could be present in several forms, depending on the chemistry of the process used. Inorganic iodine will be the predominate species in any shearing or voloxidation pretreatment off-gas and dissolver off-gas (DOG). Organic iodides such as CH3I, C4H9I, and C12H25I have been proposed to be generated during solvent extraction; thus, these species must be captured from the vessel off-gas (VOG). The abatement of inorganic and organic iodide species to meet United States regulatory requirements has been demonstrated in laboratory experiments using Ag-based solid sorbents. The data presented in this paper includes the effect of gas composition (e.g., the presence of water vapor and NO x ), iodine speciation (I2, CH3I, C4H9I, C12H25I), and sorbent bed parameters (e.g., temperature, sorbent age) on complete iodine capture on Ag-mordenite in an aqueous reprocessing plant.

3.
RSC Adv ; 10(57): 34729-34731, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35514381

RESUMO

UF6 is commonly employed in enrichment technologies and is known to react rapidly with water vapor to form radioactive particulates and hydrofluoric acid vapor. The kinetics of the UF6 hydrolysis reaction have been observed directly for the first time. The rate appears to be half order and second order for UF6 and water, respectively, with a rate constant of 1.19 ± 0.22 Torr-3/2 s-1. The proposed mechanism involves formation of the [UF6·2H2O] adduct via two separate reactions.

4.
Inorg Chem ; 58(22): 15618-15628, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31674777

RESUMO

N-(2-Hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA, denoted as H3L) is a strong chelating ligand that is widely used in the separation of f elements as relevant to the nuclear fuel cycle. There is much to be known about the structure and composition of the coordination sphere of the complexes of HEDTA with lanthanides. The complexation of HEDTA with light lanthanides (La3+, Nd3+, and Eu3+) was investigated thermodynamically and structurally in aqueous solutions. Potentiometry and microcalorimetry were performed to acquire the complexation constants (25-70 °C) and enthalpies (25 °C), respectively, at I = 1.0 mol·L-1 NaClO4. Coordination modes of the complexes were analyzed by luminescence spectroscopy and NMR spectroscopy. The results indicate that there are two successive Ln3+/HEDTA complexes, LnLaq and Ln2(H-1L)22- (Ln3+ refers to La3+, Nd3+, and Eu3+; H-1L4- refers to deprotonation of the hydroxyl group) during titration. The hydroxyl group of HEDTA is coordinated in the Ln3+/HEDTA complex. The dinuclear Ln2(H-1L)22- complex is present as a carboxyl-bridged centrosymmetric dimer, and two carboxyl groups in bridging positions are coordinated to two adjacent Ln3+ cations. Complexation of NdLaq is exothermic, while formation of the hydrolytic complex Nd2(H-1L)22- is endothermic. Both NdLaq and Nd2(H-1L)22- complexes are driven by entropic force. These data will help to predict the behavior of lanthanides in the separation process, where HEDTA is used as the aqueous complexant.

5.
Inorg Chem ; 57(13): 7684-7693, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29916703

RESUMO

N-(2-Hydroxyethyl)ethylenediamine- N, N', N'-triacetic acid (HEDTA, denoted as H3L in this work, and the three dissociable protons represent those of the three carboxylic groups) is a strong chelating ligand and plays an important role in the treatment and disposal of nuclear wastes as well as separation sciences of f-elements. In this work, the complexation of HEDTA with U(VI) was studied thermodynamically and structurally in aqueous solutions. Potentiometry and microcalorimetry were used to measure the complexation constants (298-343 K) and enthalpies (298 K), respectively, at I = 1.0 mol·L-1 NaClO4. Thermodynamic studies identified three 1:1 U(VI)/HEDTA complexes with different degrees of deprotonation, namely, UO2(HL)(aq), UO2L-, and UO2(H-1L)2-, where H-1 represents the deprotonation of the hydroxyl group. The results indicated that all three complexation reactions are endothermic and driven by entropy only. Coordination modes of the three complexes were investigated by NMR and extended X-ray absorption fine structure spectroscopies. In the UO2(HL)(aq) complex, HEDTA holds a tridentate mode, and the coordination occurs to the end of the ethylenediamine backbone. Two oxygens of the two carboxylic groups and one nitrogen of the amine group participate in the coordination. In both UO2L- and UO2(H-1L)2-, HEDTA holds a tetradentate mode and coordinates to U(VI) along the side of the ethylenediamine backbone. The difference is that in the UO2(H-1L)2- complex, the alkoxide form of the HEDTA hydroxyl group directly binds to the U(VI) atom, forming a highly strong chelation.

6.
Inorg Chem ; 56(9): 4788-4795, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28409623

RESUMO

The equilibrium constants for [NpO2·M]4+ (M = Al3+, In3+, Sc3+, Fe3+) in µ = 10 M nitric acid and [NpO2·Ga]4+ in µ = 10 M hydrochloric acid media have been determined. The trend in the interaction strength follows: Fe3+ > Sc3+ ≥ In3+ > Ga3+ ≫ Al3+. These equilibrium constants are compared to those of previously reported values for NpO2+ complexes with Cr3+ and Rh3+ within the literature. Thermodynamic parameters and bonding modes are discussed, with density functional theory and natural bond orbital analysis indicating that the NpO2+ dioxocation acts as a π-donor with transition-metal cations and a σ-donor with group 13 cations. The small changes in electron-donating ability is modulated by the overlap with the coordinating metal ion's valence atomic orbitals.

7.
Dalton Trans ; 45(39): 15517-15522, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27704061

RESUMO

Using Density Functional Theory calculations in combination with explicit solvent and a continuum solvent model, this work sets out to understand the coordination environment and relevant thermodynamics of La(iii)-lactate complexes. Calculations focus on the coordination modes for the complexes and changes in Gibbs free energy for complexation in solution. These results confirm that the α-hydroxyl group should be protonated, or at least hydrogen bonded to a water molecule, upon successive addition of the lactate ligand to the La(iii) center using Bader's Atoms-in Molecules (AIM) approach. In addition, we present a straightforward method for predicting stability constants at the semi-quantitative level for La(iii)-lactate complexes in solution. The proposed method could be particularly useful for prediction of lanthanide complex formation in various biochemical, environmental, and nuclear separations processes.

8.
ACS Appl Mater Interfaces ; 8(14): 9523-31, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27018913

RESUMO

Rare earth elements (REEs) make unique and vital contributions to our current world of technology. Separating and recycling REEs is of great importance to diversify the sources of REEs and advance the efficient use of REE resources when the supply is limited. In light of separation nanotechnology, diethylenetriamine-pentaacetic acid (DTPA) functionalized magnetic nanosorbents have been synthesized and investigated for the highly selective extraction of heavy (Sm-Ho) and light (La-Nd) lanthanides (Ln) from aqueous solutions. The results demonstrated that the separation factor (SF) between heavy-Ln and light-Ln groups reached the maximal value of 11.5 at low pH value of 2.0 in 30 min. For example, the SFs of Gd/La and Dy/La pairs were up to 10 times higher than that reported by other studies. Besides the excellent selectivity, our double-coated magnetic nanoparticles coupled with diethylenetriaminepentaacetic acid (dMNP-DTPA) nanosorbents are more advantageous in that the Ln(III) sorption was effectively and quickly (in 30 min) achieved in acid solutions with pH values as low as 2.0. Such attributes ensure a stronger adaptability to the harsh environments of REE recycling processes. Displacement phenomena were subsequently observed between the heavy-Ln and light-Ln ions that were coexisting in solution and competing for the same sorption sites, causing the increase in sorption capacity of heavy Ln on the surface of nanosorbents with time. The order of affinity of Ln(III) to DTPA-functionalized magnetic nanosorbents perfectly followed the corresponding stability constants between Ln(III) and nonimmobilized DTPA. Displacement phenomena and lanthanide contraction, as well as the surface nanostructures of DTPA-functionalized nanosorbents, significantly improved the separation factors of heavy-Ln/light-Ln pairs. The Ln(III) interaction with DTPA-functionalized magnetic nanosorbents followed the pseudo-second-order kinetics with a correlation coefficient extremely high and close to unity.

9.
Inorg Chem ; 54(4): 1232-9, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25654313

RESUMO

Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of the nearly identical chemical properties of these groups. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 °C was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy of complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA.

10.
J Phys Chem B ; 118(44): 12725-33, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25315891

RESUMO

A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a monofunctional solvating ligand (tri-n-octylphosphine oxide, TOPO). Stability constants for successive nitrato complexes (M(NO3)x(3-x)(aq) where M is Eu(3+), Am(3+), or Cm(3+)) were determined to assist in the calculation of the extraction constant, K(ex), for the metal ions under study. Enthalpies of extraction (ΔH(extr)) for the lanthanide series (excluding Pm(3+)) and Am(3+) by TOPO have been measured using isothermal titration calorimetry. The observed ΔH(extr) were found to be constant at ~29 kJ mol(-1) across the series from La(3+) to Er(3+), with a slight decrease observed from Tm(3+) to Lu(3+). These heats were found to be consistent with enthalpies determined using van't Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (ΔG, ΔH, ΔS) was calculated for Eu(NO3)3, Am(NO3)3, and Cm(NO3)3 extraction by TOPO and Am(3+) and Cm(3+) extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ΔH(extr), presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.

11.
Inorg Chem ; 52(7): 3728-37, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496236

RESUMO

The aqueous solution behavior of An(III) (An = Am or Cm) in the presence of EDTA(4-) (ethylenediamine tetraacetate), CO3(2-) (carbonate), and OH(-) (hydroxide) ligands has been probed in aqueous nitrate solution (various concentrations) at room temperature by UV-vis absorption and luminescence spectroscopies (Cm systems analyzed using UV-vis only). Ternary complexes have been shown to exist, including [An(EDTA)(CO3)](3-)(aq), (where An = Am(III) or Cm(III)), which form over the pH range 8 to 11. It is likely that carbonate anions and water molecules are in dynamic exchange for complexation to the [An(EDTA)](-)(aq) species. The carbonate ion is expected to bind as a bidentate ligand and replaces two coordinated water molecules in the [An(EDTA)](-)(aq) complex. In a 1:1 Am(III)/EDTA(4-) binary system, luminescence spectroscopy shows that the number of coordinated water molecules (N(H2O)) decreases from ~8 to ~3 as pH is increased from approximately 1 to 10. This is likely to represent the formation of the [Am(EDTA)(H2O)3](-) species as pH is raised. For a 1:1:1 Am(III)/EDTA(4-)/CO3(2-) ternary system, the N(H2O) to the [Am(EDTA)](-)(aq) species over the pH range 8 to 11 falls between 2 and 3 (cf. ~3 to ~4 in the binary system) indicating formation of the [An(EDTA)(CO3)](3-)(aq) species. As pH is further increased from approximately 10 to 12 in both systems, there is a sharp decrease in N(H2O) from ~3 to ~2 in the binary system and from ~2 to ~1 in the ternary system. This is likely to correlate to the formation of hydrolyzed species (e.g., [Am(EDTA)(OH)](2-)(aq) and/or Am(OH)(3(s))).

12.
Dalton Trans ; 42(7): 2636-42, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23223573

RESUMO

Through Density Function Theory (DFT) calculations, we set out to understand the structures and stabilities of the aqueous phase complexes [M(III)(DTPA)-H(2)O](2-) (M = Nd, Am) as well as the changes in Gibbs free energy for complexation in the gas phase and aqueous solution. All bonding analyses suggest that the preference of the DTPA(5-) ligand for Am over Nd is mainly due to electrostatic and covalent interactions from the oxygen atoms with the nitrogen chelates providing an additional, yet small, covalent interaction. These results question the exclusive use of hard and soft acids and bases (HSAB) concepts for the design of extracting reagents and suggest that hard-soft interactions may play more of a role in the separations process than previously thought.

13.
Inorg Chem ; 50(7): 3087-96, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21375350

RESUMO

Stability constants of two DTPA (diethylenetriaminepentaacetic acid) complexes with lanthanides (ML(2-) and MHL(-), where M stands for Nd and Eu and L stands for diethylenetriaminepentaacetate) at 10, 25, 40, 55, and 70 °C were determined by potentiometry, absorption spectrophotometry, and luminescence spectroscopy. The enthalpies of complexation at 25 °C were determined by microcalorimetry. Thermodynamic data show that the complexation of Nd(3+) and Eu(3+) with DTPA is weakened at higher temperatures, a 10-fold decrease in the stability constants of ML(2-) and MHL(-) as the temperature is increased from 10 to 70 °C. The effect of temperature is consistent with the exothermic enthalpy of complexation directly measured by microcalorimetry. Results by luminescence spectroscopy and density functional theory (DFT) calculations suggest that DTPA is octa-dentate in both the EuL(2-) and EuHL(-) complexes and, for the first time, the coordination mode in the EuHL(-) complex was clarified by integration of the experimental data and DFT calculations. In the EuHL(-) complex, the Eu is coordinated by an octa-dentate H(DTPA) ligand and a water molecule, and the protonation occurs on the oxygen of a carboxylate group.


Assuntos
Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/química , Ácido Pentético/química , Teoria Quântica , Termodinâmica , Calorimetria , Medições Luminescentes , Potenciometria
14.
Inorg Chem ; 49(22): 10598-605, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20964412

RESUMO

The complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy, and microcalorimetry. The stability constants of three successive lactate complexes (ML(2+), ML(2)(+), and ML(3)(aq), where M stands for Nd and Eu and L stands for lactate) at 10, 25, 40, 55, and 70 °C were determined. The enthalpies of complexation at 25 °C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd(3+) and Eu(3+)) with lactate is exothermic and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated α-hydroxyl group of lactate participates in the complexation.

15.
J Phys Chem A ; 113(1): 141-5, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19067560

RESUMO

Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer and to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH approximately 3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid this rate constant is given by the following equation: ln k(1) = (23.85 +/- 0.19) - (1120 +/- 54)/T, corresponding to an activation energy of 9.31 +/- 0.45 kJ mol(-1) and a room temperature reaction rate constant of (5.24 +/- 0.35) x 10(8) M(-1) s(-1) (24.0 degrees C). For the lactate ion, the temperature-dependent rate constant is given by ln k(2) = (24.83 +/- 0.14) - (1295 +/- 42)/T, for an activation energy of 10.76 +/- 0.35 kJ mol(-1) and a room temperature value of (7.77 +/- 0.50) x 10(8) M(-1) s(-1) (22.2 degrees C). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pK(a) value, allowing thermodynamic parameters for the acid dissociation to be calculated as DeltaH(o) = -10.75 +/- 1.77 kJ mol(-1), DeltaS(o) = -103.9 +/- 6.0 J K(-1) mol(-1) and DeltaG(o) = 20.24 +/- 2.52 kJ mol(-1) at low ionic strength.

16.
Inorg Chem ; 47(15): 6984-9, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18597416

RESUMO

Higher oxidation states of americium have long been known; however, options for their preparation in acidic solution are limited. The conventional choice, silver-catalyzed peroxydisulfate, is not useful at nitric acid concentrations above about 0.3 M. We investigated the use of sodium bismuthate as an oxidant for Am (3+) in acidic solution. Room-temperature oxidation produced AmO 2 (2+) quantitatively, whereas oxidation at 80 degrees C produced AmO 2 (+) quantitatively. The efficacy of the method for the production of oxidized americium was verified by fluoride precipitation and by spectroscopic absorbance measurements. We performed absorbance measurements using a conventional 1 cm cell for high americium concentrations and a 100 cm liquid waveguide capillary cell for low americium concentrations. Extinction coefficients for the absorbance of Am (3+) at 503 nm, AmO 2 (+) at 514 nm, and AmO 2 (2+) at 666 nm in 0.1 M nitric acid are reported. We also performed solvent extraction experiments with the hexavalent americium using the common actinide extraction ligand tributyl phosphate (TBP) for comparison to the other hexavalent actinides. Contact with 30% tributyl phosphate in dodecane reduced americium; it was nevertheless extracted using short contact times. The TBP extraction of AmO 2 (2+) over a range of nitric acid concentrations is shown for the first time and was found to be analogous to that of uranyl, neptunyl, and plutonyl ions.

17.
J Phys Chem A ; 112(28): 6275-80, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18572898

RESUMO

Tributyl phosphate (TBP) is the most common organic compound used in liquid-liquid separations for the recovery of uranium, neptunium, and plutonium from acidic nuclear fuel dissolutions. The goal of these processes is to extract the actinides while leaving fission products in the acidic, aqueous phase. However, the radiolytic degradation of TBP has been shown to reduce separation factors of the actinides from fission products and to impede the back-extraction of the actinides during stripping. As most previous investigations of the radiation chemistry of TBP have focused on steady state radiolysis and stable product identification, with dibutylphosphoric acid (HDBP) invariably being the major product, here we have determined room temperature rate constants for the reactions of TBP and HDBP with the hydroxyl radical [(5.00 +/- 0.05) x 10(9), (4.40 +/- 0.13) x 10(9) M(-1) s(-1)], hydrogen atom [(1.8 +/-0.2) x 10(8), (1.1 +/- 0.1) x 10(8) M(-1) s(-1)], nitrate radical [(4.3 +/- 0.7) x 10(6), (2.9 +/- 0.2) x 10(6) M(-1) s(-1)], and nitrite radical (<2 x 10 (5), <2 x 10(5) M(-1) s(-1)), respectively. These data are used to discuss the mechanism of TBP radical-induced degradation.

18.
Inorg Chem ; 43(18): 5480-2, 2004 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-15332793

RESUMO

We report the synthesis and structural characterization of [UO(2)(ReO(4))(DPPMO(2))(2)][ReO(4)] and [UO(2)(Cl)(DPPMO(2))(2)][Cl] (where DPPMO(2) = bis(diphenylphosphino)methane dioxide). In both complexes, the linear uranyl dication is coordinated to two bidentate DPPMO(2) ligands in the equatorial plane with one coordinated and one non-coordinated anion (either perrhenate or chloride). We have also prepared the pertechnetate analogue, and, through (31)P and (99)Tc NMR, we have shown that the cation, [UO(2)(TcO(4))(DPPMO(2))(2)](+), is stable in solution.


Assuntos
Compostos de Organotecnécio/síntese química , Pertecnetato Tc 99m de Sódio/química , Compostos de Urânio/química , Ânions/síntese química , Ânions/química , Cloretos/química , Cristalografia por Raios X , Ligantes , Modelos Químicos , Compostos de Organotecnécio/química , Rênio/química , Pertecnetato Tc 99m de Sódio/análogos & derivados , Pertecnetato Tc 99m de Sódio/síntese química , Compostos de Urânio/síntese química
19.
Chem Commun (Camb) ; (16): 1668-9, 2002 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12196941

RESUMO

Tetrathiafulvalene carboxylate associates with the charge neutral complex, Yb.DO3A, in methanolic solution to give rise to a novel ternary species; the tetrathiafulvalene unit transfers energy to the lanthanide, causing luminescence from the Yb metal, indicating for the first time that an electron donor chromophore can act as an efficient sensitiser in a self-assembled system containing a lanthanide acceptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...